Skip to main content
Log in

Fear extinction is impaired in aged rats

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Normal aging is accompanied by broad loss of cognitive function in humans and rodents, including declines in cognitive flexibility. In extinction, a conditional stimulus (CS) that was previously paired with a footshock is presented alone. This procedure reliably reduces conditional freezing behavior in young adult rats. Here, we aimed to investigate how normal aging affects extinction learning. Using young (3 months) and aged (20 months) male and female Long Evans rats, we compared extinction (using 20 CS-alone presentations) to a no extinction control (equal exposure to the conditioning chamber without CS presentations) following delay fear conditioning. We found that young animals in the extinction group showed a decrease in freezing following extinction; aged animals did not. We next examined changes in neural activity using expression of the immediate early gene zif268. In young animals, extinction corresponded with decreased expression of zif268 in the basolateral amygdala and anterior retrosplenial cortex; this was not observed in aged animals. Further, aged animals showed increased zif268 expression in each region examined, suggesting that dysfunction in neural activity precedes cognitive deficits. These results demonstrate that aging impacts both extinction learning and neural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available upon request.

References

  1. Merenstein JL, Corrada MM, Kawas CH, Bennett IJ. Age affects white matter microstructure and episodic memory across the older adult lifespan. Neurobiol Aging. 2021;106:282–91.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res Rev. 2015;24:232–62.

    Article  CAS  PubMed  Google Scholar 

  3. Hankosky ER, Sherrill LK, Ruvola LA, Haake RM, Kim T, Hammerslag LR, Gulley JM. Effects of β-hydroxy-β-methyl butyrate on working memory and cognitive flexibility in an animal model of aging. Nutr Neurosci. 2017;20:379–87.

    Article  CAS  PubMed  Google Scholar 

  4. Lacreuse A, Parr L, Chennareddi L, Herndon JG. Age-related decline in cognitive flexibility in female chimpanzees. Neurobiol Aging. 2018;72:83–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Matzel LD, Light KR, Wass C, Colas-Zelin D, Denman-Brice A, Waddel AC, Kolata S. Longitudinal attentional engagement rescues mice from age-related cognitive declines and cognitive inflexibility. Learn Mem. 2011;18:345–56.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bizon JL, Foster TC, Alexander GE, Glisky EL. Characterizing cognitive aging of working memory and executive function in animal models. Front Aging Neurosci. 2012;4:19.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Unverzagt FW, Gao S, Baiyewu O, Ogunniyi AO, Gureje O, Perkins A, Hendrie HC. Prevalence of cognitive impairment: Data from the Indianapolis Study of Health and Aging. Neurology. 2001;57:1655–62.

    Article  CAS  PubMed  Google Scholar 

  8. Canas JJ, Fajardo I, Salmeron L. Cognitive flexibility. Int Encyclopedia of Ergonomics and Human Factors. 2006;1:297–301.

    Google Scholar 

  9. Manrique HM, Call J. Age-dependent cognitive inflexibility in great apes. Anim Behav. 2015;102:1–6.

    Article  Google Scholar 

  10. Chamberlain SR, Solly JE, Hook RW, Vaghi MM, Robbins TW. Cognitive inflexibility in OCD and related disor. The Neurobiology and Treatment of OCD: Accelerating Progress. 2021;49:125–45.

  11. Gu BM, Park JY, Kang DH, Lee SJ, Yoo SY, Jo HJ, Kwon JS. Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain. 2008;131:155–64.

    Article  PubMed  Google Scholar 

  12. Kwapis JL, Alaghband Y, Keiser AA, Dong TN, Michael CM, Rhee D, Wood MA. Aging mice show impaired memory updating in the novel OUL updating paradigm. Neuropsychopharmacol. 2020;45(2):337–46.

    Article  Google Scholar 

  13. Merhav M, Riemer M, Wolbers T. Spatial updating deficits in human aging are associated with traces of former memory representations. Neurobiol Aging. 2019;76:53–61.

    Article  PubMed  Google Scholar 

  14. Moyer JR Jr, Brown TH. Impaired trace and contextual fear conditioning in aged rats. Behav Neurosci. 2006;120:612.

    Article  PubMed  Google Scholar 

  15. Dulka BN, Trask S, Helmstetter FJ. Age-related memory impairment and sex-specific alterations in phosphorylation of the Rpt6 proteasome subunit and polyubiquitination in the basolateral amygdala and medial prefrontal cortex. Front Aging Neurosci. 2021;13:163.

    Article  Google Scholar 

  16. Trask S, Dulka BN, Helmstetter FJ. Age-related memory impairment is associated with increased zif268 protein accumulation and decreased Rpt6 phosphorylation. Int J Mol Sci. 2020;21:5352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwapis JL, Jarome TJ, Lee JL, Gilmartin MR, Helmstetter FJ. Extinguishing trace fear engages the retrosplenial cortex rather than the amygdala. Neurobiol Learn Mem. 2014;113:41–54.

    Article  PubMed  Google Scholar 

  18. Ferrara NC, Cullen PK, Pullins SP, Rotondo EK, Helmstetter FJ. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination. Learn Mem. 2017;24:414–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferrara NC, Trask S, Pullins SE, Helmstetter FJ. Regulation of learned fear expression through the MgN-amygdala pathway. Neurobiol Learn Mem. 2021;185:107526.

    Article  PubMed  Google Scholar 

  20. Orsini CA, Maren S. Glutamate receptors in the medial geniculate nucleus are necessary for expression and extinction of conditioned fear in rats. Neurobiol Learn Mem. 2009;92:581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chowdhury N, Quinn JJ, Fanselow MS. Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav Neurosci. 2005;119:13–96.

    Article  Google Scholar 

  22. Fournier DI, Monasch RR, Bucci DJ, Todd TP. Retrosplenial cortex damage impairs unimodal sensory preconditioning. Behav Neurosci. 2020;134:198.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gilmartin MR, Kwapis JL, Helmstetter FJ. Trace and contextual fear conditioning are impaired following unilateral microinjection of muscimol in the ventral hippocampus or amygdala, but not the medial prefrontal cortex. Neurobiol Learn Mem. 2012;97:452–64.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Quinn JJ, Oommen SS, Morrison GE, Fanselow MS. Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner. Hippocampus. 2002;12:495–504.

    Article  PubMed  Google Scholar 

  25. Raybuck JD, Lattal KM. Double dissociation of amygdala and hippocampal contributions to trace and delay fear conditioning. PLoS ONE. 2011;6:e15982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson S, Todd TP, Pasternak AR, Luikart BW, Skelton PD, Urban DJ, Bucci DJ. Chemogenetic silencing of neurons in retrosplenial cortex disrupts sensory preconditioning. J Neurosci. 2014;34:10982–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Trask S, Pullins SE, Ferrara NC, Helmstetter FJ. The anterior retrosplenial cortex encodes event-related information and the posterior retrosplenial cortex encodes context-related information during memory formation. Neuropsychopharmacology. 2021;46:1386–92.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Trask S, Ferrara NC, Grisales K, Helmstetter FJ. Optogenetic inhibition of either the anterior or posterior retrosplenial cortex disrupts retrieval of a trace, but not delay, fear memory. Neurobiol Learn Mem. 2021;185:107530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trask S, Helmstetter FJ. Unique roles for the anterior and posterior retrosplenial cortices in encoding and retrieval of memory for context. Cereb Cortex. 2022;32:3602–10.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Todd TP, Mehlman ML, Keene CS, DeAngeli NE, Bucci DJ. Retrosplenial cortex is required for the retrieval of remote memory for auditory cues. Learn Mem. 2016;23:278–88.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kwapis JL, Jarome TJ, Lee JL, Helmstetter FJ. The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning. Neurobiol Learn Mem. 2015;123:110–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ash JA, Lu H, Taxier LR, Long JM, Yang Y, Stein EA, Rapp PR. Functional connectivity with the retrosplenial cortex predicts cognitive aging in rats. Proc Natl Acad Sci. 2016;113(43):12286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buckner RL. Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron. 2004;44:195–208.

    Article  CAS  PubMed  Google Scholar 

  34. Bouton ME, Maren S, McNally GP. Behavioral and neurobiological mechanisms of Pavlovian and instrumental extinction learning. Physiol Rev. 2021;101:611–81.

    Article  PubMed  Google Scholar 

  35. Trask S, Thrailkill EA, Bouton ME. Occasion setting, inhibition, and the contextual control of extinction in Pavlovian and instrumental (operant) learning. Behav Processes. 2017;137:64–72.

    Article  PubMed  Google Scholar 

  36. Lacagnina AF, Brockway ET, Crovetti CR, Shue F, McCarty MJ, Sattler KP, Drew MR. Distinct hippocampal engrams control extinction and relapse of fear memory. Nat Neurosci. 2019;22:753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corcoran KA, Frick BJ, Radulovic J, Kay LM. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory. Neurobiol Learn Mem. 2016;127:93–101.

    Article  PubMed  Google Scholar 

  38. Corcoran KA, Leaderbrand K, Radulovic J. Extinction of remotely acquired fear depends on an inhibitory NR2B/PKA pathway in the retrosplenial cortex. J Neurosci. 2013;33:19492–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sachser RM, Crestani AP, Quillfeldt JA, e Souza, T. M., & de Oliveira Alvares, L. The cannabinoid system in the retrosplenial cortex modulates fear memory consolidation, reconsolidation, and extinction. Learn Mem. 2015;22:584–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brunswick CA, Baldwin DJ, Bodinayake KK, McKenna AR, Lo CY, Bellfy L, Kwapis JL. The clock gene Per1 is necessary in the retrosplenial cortex—but not in the suprachiasmatic nucleus—for incidental learning in young and aging male mice. Neurobiol Aging. 2023;126:77–90.

    Article  CAS  PubMed  Google Scholar 

  41. Trask S, Fournier DI. Examining a role for the retrosplenial cortex in age-related memory impairment. Neurobiol Learn Mem. 2022;189:107601.

    Article  PubMed  Google Scholar 

  42. Dulka BN, Pullins SE, Cullen PK, Moyer JR Jr, Helmstetter FJ. Age-related memory deficits are associated with changes in protein degradation in brain regions critical for trace fear conditioning. Neurobiol Aging. 2020;91:160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaczorowski CC, Davis SJ, Moyer JR Jr. Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning. Neurobiol Aging. 2012;33:1744–57.

    Article  PubMed  Google Scholar 

  44. Bonanno GR, Met Hoxha E, Robinson PK, Ferrara NC, Trask S. Fear reduced through unconditional stimulus deflation is behaviorally distinct from extinction and differentially engages the amygdala. Biological Psychiatry Global Open Science. 2023;3:756–65.

  45. Hoffman AN, Parga A, Paode PR, Watterson LR, Nikulina EM, Hammer RP Jr, Conrad CD. Chronic stress enhanced fear memories are associated with increased amygdala zif268 mRNA expression and are resistant to reconsolidation. Neurobiol Learn Mem. 2015;120:61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fanselow MS. Conditional and unconditional components of post-shock freezing. Pavlovian J Biol Sci: Official J Pavlov. 1980;15(4):177–82.

    Article  CAS  Google Scholar 

  47. Bauer EP. Sex differences in fear responses: Neural circuits. Neuropharmacology. 2023;222: 109298.

    Article  CAS  PubMed  Google Scholar 

  48. Hernandez CM, Jackson NL, Hernandez AR, McMahon LL. Impairments in fear extinction memory and basolateral amygdala plasticity in the TgF344-AD rat model of Alzheimer’s disease are distinct from nonpathological aging. eNeuro. 2022;9:25–6.

    Article  Google Scholar 

  49. Binette AN, Totty MS, Maren S. Sex differences in the immediate extinction deficit and renewal of extinguished fear in rats. PLoS ONE. 2022;17:e0264797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Asok A, Schreiber WB, Jablonski SA, Rosen JB, Stanton ME. Egr-1 increases in the prefrontal cortex following training in the context preexposure facilitation effect (CPFE) paradigm. Neurobiol Learn Mem. 2013;106:145–53.

    Article  CAS  PubMed  Google Scholar 

  51. Esclassan F, Coutureau E, Di Scala G, Marchand AR. Differential contribution of dorsal and ventral hippocampus to trace and delay fear conditioning. Hippocampus. 2009;19:33–44.

    Article  PubMed  Google Scholar 

  52. Pang MH, Kim NS, Kim IH, Kim H, Kim HT, Choi JS. Cholinergic transmission in the dorsal hippocampus modulates trace but not delay fear conditioning. Neurobiol Learn Mem. 2010;94:206–13.

    Article  PubMed  Google Scholar 

  53. Quinn JJ, Wied HM, Ma QD, Tinsley MR, Fanselow MS. Dorsal hippocampus involvement in delay fear conditioning depends upon the strength of the tone-footshock association. Hippocampus. 2008;18:640–54.

    Article  PubMed  Google Scholar 

  54. Driscoll I, Sutherland RJ. The aging hippocampus: Navigating between rat and human experiments. Rev Neurosci. 2005;16:87–122.

    Article  CAS  PubMed  Google Scholar 

  55. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology. 2011;36:529–38.

    Article  PubMed  Google Scholar 

  56. Bouton ME, Mineka S, Barlow DH. A modern learning theory perspective on the etiology of panic disorder. Psychol Rev. 2001;108:4–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the animal care staff in the Purdue University Department of Psychological Sciences for providing care for the rats used in this study and Dr. Nicole Ferrara for input on conceptualization of the experiment.

Funding

This work was supported by the Research Corporation for Science Advancement (Award No. 29107) to S.T.

Author information

Authors and Affiliations

Authors

Contributions

P.K.R., E.M., and S.T. designed the experiments. P.K.R., E.M., D.W., and S.T. performed the data collection. P.K.R., E.M., K.P.K., and S.T. wrote the manuscript.

Corresponding author

Correspondence to Sydney Trask.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, P.K., Met Hoxha, E., Williams, D. et al. Fear extinction is impaired in aged rats. GeroScience 46, 2815–2825 (2024). https://doi.org/10.1007/s11357-024-01084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01084-5

Keywords

Navigation