Skip to main content

Advertisement

Log in

Performance of digital technologies in assessing fall risks among older adults with cognitive impairment: a systematic review

  • REVIEW
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Older adults with cognitive impairment (CI) are twice as likely to fall compared to the general older adult population. Traditional fall risk assessments may not be suitable for older adults with CI due to their reliance on attention and recall. Hence, there is an interest in using objective technology-based fall risk assessment tools to assess falls within this population. This systematic review aims to evaluate the features and performance of technology-based fall risk assessment tools for older adults with CI. A systematic search was conducted across several databases such as PubMed and IEEE Xplore, resulting in the inclusion of 22 studies. Most studies focused on participants with dementia. The technologies included sensors, mobile applications, motion capture, and virtual reality. Fall risk assessments were conducted in the community, laboratory, and institutional settings; with studies incorporating continuous monitoring of older adults in everyday environments. Studies used a combination of technology-based inputs of gait parameters, socio-demographic indicators, and clinical assessments. However, many missed the opportunity to include cognitive performance inputs as predictors to fall risk. The findings of this review support the use of technology-based fall risk assessment tools for older adults with CI. Further advancements incorporating cognitive measures and additional longitudinal studies are needed to improve the effectiveness and clinical applications of these assessment tools. Additional work is also required to compare the performance of existing methods for fall risk assessment, technology-based fall risk assessments, and the combination of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data utilised for this study is available at the Health Services and Systems Signature Research Programme of DUke-NUS Medical School. De-identified data can be made available upon reasonable request.

References

  1. Salari N, Darvishi N, Ahmadipanah M, et al. Global prevalence of falls in the older adults: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2022;17(1):334. https://doi.org/10.1186/s13018-022-03222-1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tsai Y-J, Yang P-Y, Yang Y-C, et al. Prevalence and risk factors of falls among community-dwelling older people: results from three consecutive waves of the national health interview survey in Taiwan. BMC Geriatr. 2020;20(1):529. https://doi.org/10.1186/s12877-020-01922-z.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vaishya R, Vaish A. Falls in older adults are serious. Indian J Orthop. 2020;54(1):69–74. https://doi.org/10.1007/s43465-019-00037-x.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Soomar SM, Dhalla Z. Injuries and outcomes resulting due to falls in elderly patients presenting to the Emergency Department of a tertiary care hospital – a cohort study. BMC Emerg Med. 2023;23(1):14. https://doi.org/10.1186/s12873-023-00784-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Montero-Odasso M, van der Velde N, Martin FC, et al. World guidelines for falls prevention and management for older adults: a global initiative. Age Ageing. 2022; 51(9):afac205. https://doi.org/10.1093/ageing/afac205.

  6. Muir SW, Gopaul K, Montero Odasso MM. The role of cognitive impairment in fall risk among older adults: a systematic review and meta-analysis. Age and Ageing. 2012;41(3):299–308. https://doi.org/10.1093/ageing/afs012.

    Article  PubMed  Google Scholar 

  7. Kirova AM, Bays RB, Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. Biomed Res Int. 2015;2015:748212. https://doi.org/10.1155/2015/748212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang W, Low LF, Schwenk M, et al. Review of gait, cognition, and fall risks with implications for fall prevention in older adults with dementia. Dement Geriatr Cogn Disord. 2019;48(1–2):17–29. https://doi.org/10.1159/000504340.

    Article  PubMed  Google Scholar 

  9. Radavelli-Bagatini S, Macpherson H, Scott D, et al. Impaired muscle function, including its decline, is related to greater long-term late-life dementia risk in older women. J Cachexia Sarcopenia Muscle. 2023;14(3):1508–19. https://doi.org/10.1002/jcsm.13227.

  10. Kim M, Won CW. Sarcopenia is associated with cognitive impairment mainly due to slow gait speed: results from the Korean frailty and aging cohort study (KFACS). Int J Environ Res Public Health. 2019;16(9):1491. https://doi.org/10.3390/ijerph16091491.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Billot M, Calvani R, Urtamo A, et al. Preserving mobility in older adults with physical frailty and sarcopenia: opportunities, challenges, and recommendations for physical activity interventions. Clin Interv Aging. 2020;15:1675–90. https://doi.org/10.2147/cia.S253535.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ng TKS, Han MFY, Loh PY, et al. Differential associations between simple physical performance tests with global and specific cognitive functions in cognitively normal and mild cognitive impairment: a cross-sectional cohort study of Asian community-dwelling older adults. BMC Geriatr. 2022;22(1):798. https://doi.org/10.1186/s12877-022-03434-4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chantanachai T, Taylor ME, Lord SR, et al. Risk factors for falls in community-dwelling older people with mild cognitive impairment: a prospective one-year study. PeerJ. 2022;10:e13484. https://doi.org/10.7717/peerj.13484.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Winter H, Watt K, Peel NM. Falls prevention interventions for community-dwelling older persons with cognitive impairment: a systematic review. Int Psychogeriatr. 2013;25(2):215–27. https://doi.org/10.1017/S1041610212001573.

    Article  PubMed  Google Scholar 

  15. Casas-Herrero A, Anton-Rodrigo I, Zambom-Ferraresi F, et al. Effect of a multicomponent exercise programme (VIVIFRAIL) on functional capacity in frail community elders with cognitive decline: study protocol for a randomized multicentre control trial. Trials. 2019;20(1):362. https://doi.org/10.1186/s13063-019-3426-0.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eckstrom E, Parker EM, Lambert GH, et al. Implementing STEADI in Academic Primary Care to Address Older Adult Fall Risk. Innov Aging. 2017;1(2):igx028. https://doi.org/10.1093/geroni/igx028.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Phelan EA, Mahoney JE, Voit JC, et al. Assessment and management of fall risk in primary care settings. Med Clin North Am. 2015;99(2):281–93. https://doi.org/10.1016/j.mcna.2014.11.004.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Welch SA, Ward RE, Beauchamp MK, et al. The short physical performance battery (SPPB): a quick and useful tool for fall risk stratification among older primary care patients. J Am Med Dir Assoc. 2021;22(8):1646–51. https://doi.org/10.1016/j.jamda.2020.09.038.

    Article  PubMed  Google Scholar 

  19. Shimada H, Suzukawa M, Ishizaki T, et al. Relationship between subjective fall risk assessment and falls and fall-related fractures in frail elderly people. BMC Geriatr. 2011;11(1):40. https://doi.org/10.1186/1471-2318-11-40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rajagopalan R, Litvan I, Jung TP. Fall prediction and prevention systems: recent trends, challenges, and future research directions. Sensors (Basel). 2017;17(11):2509. https://doi.org/10.3390/s17112509.

    Article  PubMed  Google Scholar 

  21. Sun R, Sosnoff JJ. Novel sensing technology in fall risk assessment in older adults: a systematic review. BMC Geriatr. 2018;18(1):14. https://doi.org/10.1186/s12877-018-0706-6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marschollek M, Rehwald A, Wolf K-H, et al. Sensors vs. experts - a performance comparison of sensor-based fall risk assessment vs. conventional assessment in a sample of geriatric patients. BMC Med Inform Decision Making. 2011;11(1):48. https://doi.org/10.1186/1472-6947-11-48.

    Article  Google Scholar 

  23. Ejupi A, Lord SR, Delbaere K. New methods for fall risk prediction. Curr Opin Clin Nutr Metab Care. 2014;17(5):407–11. https://doi.org/10.1097/mco.0000000000000081.

    Article  PubMed  Google Scholar 

  24. Chen M, Wang H, Yu L, et al. A systematic review of wearable sensor-based technologies for fall risk assessment in older adults. Sensors (Basel). 2022;22(18):6752. https://doi.org/10.3390/s22186752.

    Article  PubMed  Google Scholar 

  25. Bezold J, Krell-Roesch J, Eckert T, et al. Sensor-based fall risk assessment in older adults with or without cognitive impairment: a systematic review. Eur Rev Aging Phys Act. 2021;18(1):15. https://doi.org/10.1186/s11556-021-00266-w.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210. https://doi.org/10.1186/s13643-016-0384-4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115(5):654–7. https://doi.org/10.1161/CIRCULATIONAHA.105.594929.

    Article  PubMed  Google Scholar 

  28. Li F, He H. Assessing the accuracy of diagnostic tests. Shanghai Arch Psychiatry. 2018;30(3):207–12. https://doi.org/10.11919/j.issn.1002-0829.218052.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol. 2022;75(1):25–36. https://doi.org/10.4097/kja.21209.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2013. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  31. Herzog R, Álvarez-Pasquin MJ, Díaz C, et al. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? a systematic review. BMC Public Health. 2013;13(1):154. https://doi.org/10.1186/1471-2458-13-154.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Srulijes K, Klenk J, Schwenk M, et al. Fall risk in relation to individual physical activity exposure in patients with different neurodegenerative diseases: a pilot study. Cerebellum. 2019;18(3):340–8. https://doi.org/10.1007/s12311-018-1002-x.

    Article  PubMed  Google Scholar 

  33. Schniepp R, Huppert A, Decker J, et al. Multimodal mobility assessment predicts fall frequency and severity in cerebellar ataxia. Cerebellum. 2023;22(1):85–95. https://doi.org/10.1007/s12311-021-01365-1.

    Article  PubMed  Google Scholar 

  34. Adeli V, Korhani N, Sabo A, et al. Ambient monitoring of gait and machine learning models for dynamic and short-term falls risk assessment in people with dementia. IEEE J Biomed Health Inform. 2023;27(7):3599–609. https://doi.org/10.1109/JBHI.2023.3267039.

    Article  PubMed  Google Scholar 

  35. Najafi B, Aminian K, Loew F, et al. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Biomed Eng. 2002;49(8):843–51. https://doi.org/10.1109/tbme.2002.800763.

    Article  PubMed  Google Scholar 

  36. Schniepp R, Huppert A, Decker J, et al. Fall prediction in neurological gait disorders: differential contributions from clinical assessment, gait analysis, and daily-life mobility monitoring. J Neurol. 2021;268(9):3421–34. https://doi.org/10.1007/s00415-021-10504-x.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ng KD, Mehdizadeh S, Iaboni A, et al. Measuring gait variables using computer vision to assess mobility and fall risk in older adults with dementia. IEEE J Transl Eng Health Med. 2020;8:1–9. https://doi.org/10.1109/JTEHM.2020.2998326.

    Article  Google Scholar 

  38. Fiems CL, Miller SA, Buchanan N, et al. Does a sway-based mobile application predict future falls in people with Parkinson disease? Arch Phys Med Rehabil. 2020;101(3):472–8. https://doi.org/10.1016/j.apmr.2019.09.013.

    Article  PubMed  Google Scholar 

  39. Gago MF, Yelshyna D, Bicho E, et al. Compensatory postural adjustments in an oculus virtual reality environment and the risk of falling in Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2016;6(2):252–67. https://doi.org/10.1159/000447124.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite® walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture. 2003;17(1):68–74. https://doi.org/10.1016/S0966-6362(02)00053-X.

    Article  PubMed  Google Scholar 

  41. Houdijk H, Appelman FM, Van Velzen JM, et al. Validity of DynaPort GaitMonitor for assessment of spatiotemporal parameters in amputee gait. J Rehabil Res Dev. 2008;45(9):1335–42. https://doi.org/10.1682/JRRD.2007.12.0209.

    Article  PubMed  Google Scholar 

  42. Schwesig R, Kauert R, Wust S, et al. Reliabilitätsstudie zum Ganganalysesystem RehaWatch / Reliability of the novel gait analysis system. RehaWatch. 2010;55(2):109–15. https://doi.org/10.1515/bmt.2010.025.

    Article  Google Scholar 

  43. Greene BR, Redmond SJ, Caulfield B. Fall risk assessment through automatic combination of clinical fall risk factors and body-worn sensor data. IEEE J Biomed Health Inform. 2017;21(3):725–31. https://doi.org/10.1109/JBHI.2016.2539098.

    Article  PubMed  Google Scholar 

  44. Del Din S, Galna B, Godfrey A, et al. Analysis of free-living gait in older adults with and without Parkinson’s disease and with and without a history of falls: identifying generic and disease-specific characteristics. J Gerontol A Biol Sci Med Sci. 2019;74(4):500–6. https://doi.org/10.1093/gerona/glx254.

    Article  PubMed  Google Scholar 

  45. Greene BR, Premoli I, McManus K, et al. Predicting fall counts using wearable sensors: a novel digital biomarker for Parkinson’s disease. Sensors (Basel). 2021;22(1):54. https://doi.org/10.3390/s22010054.

    Article  PubMed  Google Scholar 

  46. Hauer K, Dutzi I, Gordt K, et al. Specific motor and cognitive performances predict falls during ward-based geriatric rehabilitation in patients with dementia. Sensors (Basel). 2020;20(18):585. https://doi.org/10.3390/s20185385.

    Article  Google Scholar 

  47. Schwenk M, Hauer K, Zieschang T, et al. Sensor-derived physical activity parameters can predict future falls in people with dementia. Gerontology. 2014;60(6):483–92. https://doi.org/10.1159/000363136.

    Article  PubMed  Google Scholar 

  48. Lord S, Galna B, Verghese J, et al. Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J Gerontol: Series A. 2012;68(7):820–7. https://doi.org/10.1093/gerona/gls255.

    Article  Google Scholar 

  49. Sterke CS, van Beeck EF, Looman CW, et al. An electronic walkway can predict short-term fall risk in nursing home residents with dementia. Gait Posture. 2012;36(1):95–101. https://doi.org/10.1016/j.gaitpost.2012.01.012.

    Article  PubMed  Google Scholar 

  50. van Schooten KS, Pijnappels M, Rispens SM, et al. Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults. J Gerontol A Biol Sci Med Sci. 2015;70(5):608–15. https://doi.org/10.1093/gerona/glu225.

    Article  CAS  PubMed  Google Scholar 

  51. Gietzelt M, Feldwieser F, Gövercin M, et al. A prospective field study for sensor-based identification of fall risk in older people with dementia. Inform Health Soc Care. 2014;39(3–4):249–61. https://doi.org/10.3109/17538157.2014.931851.

    Article  PubMed  Google Scholar 

  52. Rehman RZU, Zhou Y, Del Din S, et al. Gait analysis with wearables can accurately classify fallers from non-fallers: a step toward better management of neurological disorders. Sensors. 2020;20(23):6992. https://doi.org/10.3390/s20236992.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Iluz T, Gazit E, Herman T, et al. Automated detection of missteps during community ambulation in patients with Parkinson’s disease: a new approach for quantifying fall risk in the community setting. J Neuroeng Rehabil. 2014;11:48. https://doi.org/10.1186/1743-0003-11-48.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Handelzalts S, Alexander NB, Mastruserio N, et al. Detection of real-world trips in at-fall risk community dwelling older adults using wearable sensors. Front Med (Lausanne). 2020;7:514. https://doi.org/10.3389/fmed.2020.00514.

    Article  PubMed  Google Scholar 

  55. Teno J, Kiel DP, Mor V. Multiple stumbles: a risk factor for falls in community-dwelling elderly. A prospective study. J Am Geriatr Soc. 1990;38(12):1321–5. https://doi.org/10.1111/j.1532-5415.1990.tb03455.x.

    Article  CAS  PubMed  Google Scholar 

  56. Marques NR, Camilo GF, Martini Lopes de Dos Santos AP, et al. The ability of gait kinematic parameters to predict falls in older adults with cognitive impairments living in long term institutions. Clin Biomech (Bristol, Avon). 2019;65:123–7. https://doi.org/10.1016/j.clinbiomech.2019.04.011.

    Article  PubMed  Google Scholar 

  57. Boyle PA, Yu L, Wilson RS, et al. Poor decision making is a consequence of cognitive decline among older persons without Alzheimer’s disease or mild cognitive impairment. PLoS ONE. 2012;7(8):e43647. https://doi.org/10.1371/journal.pone.0043647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kearns WD, Fozard JL, Becker M, et al. Path tortuosity in everyday movements of elderly persons increases fall prediction beyond knowledge of fall history, medication use, and standardized gait and balance assessments. J Am Med Dir Assoc. 2012;13(7):665.e7-665.e13. https://doi.org/10.1016/j.jamda.2012.06.010.

    Article  PubMed  Google Scholar 

  59. Kelsey JL, Procter-Gray E, Hannan MT, et al. Heterogeneity of falls among older adults: implications for public health prevention. Am J Public Health. 2012;102(11):2149–56. https://doi.org/10.2105/ajph.2012.300677.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chantanachai T, Sturnieks DL, Lord SR, et al. Risk factors for falls in older people with cognitive impairment living in the community: systematic review and meta-analysis. Ageing Res Rev. 2021;71:101452. https://doi.org/10.1016/j.arr.2021.101452.

    Article  PubMed  Google Scholar 

  61. Beauchet O, Annweiler C, Montero-Odasso M, et al. Gait control: a specific subdomain of executive function? J Neuroeng Rehabil. 2012;9:12. https://doi.org/10.1186/1743-0003-9-12.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mirelman A, Herman T, Brozgol M, et al. Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PLoS ONE. 2012;7(6):e40297. https://doi.org/10.1371/journal.pone.0040297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mistridis P, Krumm S, Monsch AU, et al. The 12 years preceding mild cognitive impairment due to Alzheimer’s disease: the temporal emergence of cognitive decline. J Alzheimers Dis. 2015;48(4):1095–107. https://doi.org/10.3233/jad-150137.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhou Y, R. Zia Ur Rehman, C. Hansen, et al. Classification of neurological patients to identify fallers based on spatial-temporal gait characteristics measured by a wearable device. Sensors (Basel). 2020;20(15):4098. https://doi.org/10.3390/s20154098.

    Article  PubMed  Google Scholar 

  65. Piau A, Wild K, Mattek N, et al. Current state of digital biomarker technologies for real-life, home-based monitoring of cognitive function for mild cognitive impairment to mild Alzheimer disease and implications for clinical care: systematic review. J Med Internet Res. 2019;21(8):e12785. https://doi.org/10.2196/12785.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bergmann JHM, McGregor AH. Body-worn sensor design: what do patients and clinicians want? Ann Biomed Eng. 2011;39(9):2299–312. https://doi.org/10.1007/s10439-011-0339-9.

    Article  CAS  PubMed  Google Scholar 

  67. Chen JH, Lauderdale DS. Cognitive function, consent for participation, and compliance with wearable device protocols in older adults. J Gerontol A Biol Sci Med Sci. 2019;74(2):269–73. https://doi.org/10.1093/gerona/gly032.

    Article  PubMed  Google Scholar 

  68. Low STH, Sakhardande PG, Lai YF, et al. Attitudes and perceptions toward healthcare technology adoption among older adults in Singapore: a qualitative study. Front Public Health. 2021;9:588590. https://doi.org/10.3389/fpubh.2021.588590.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Paleyes A, Urma R-G, Lawrence ND. Challenges in deploying machine learning: a survey of case studies. ACM Comput Surv. 2022;55(6):114. https://doi.org/10.1145/3533378.

    Article  Google Scholar 

  70. Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN Computer Science. 2021;2(3):160. https://doi.org/10.1007/s42979-021-00592-x.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tarekegn A, Ricceri F, Costa G, et al. Predictive modeling for frailty conditions in elderly people: machine learning approaches. JMIR Med Inform. 2020;8(6):e16678. https://doi.org/10.2196/16678.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was conducted at the Future Health Technologies at the Singapore-ETH Centre, which was established collaboratively between ETH Zurich and the National Research Foundation Singapore. This research is supported by the National Research Foundation, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. The authors would also like express gratitude to the Centre for Ageing Research & Education (CARE) at Duke-NUS Medical School. Data collected for the study can be made available upon reasonable request and permission from CARE at Duke-NUS Medical School.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: V.J.W Koh; systematic search: V.J.W Koh, W.X. Lai; data synthesis: V.J.W Koh, W.X. Lai, K.Z. Tan; writing—original draft preparation: V.J.W Koh; writing—review and editing: V.J.W Koh, W.X. Lai, K.Z. Tan, N. Singh, D.B Matchar, A.W.M Chan; supervision, resources and funding acquisition: D.B Matchar, A.W.M Chan; All authors have read and reviewed the manuscript.

Corresponding author

Correspondence to Vanessa Koh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 6

Table 6 Full search strategy utilised on 27 July 2022, and an update was conducted on 20 July 2023

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, V., Xuan, L.W., Zhe, T.K. et al. Performance of digital technologies in assessing fall risks among older adults with cognitive impairment: a systematic review. GeroScience 46, 2951–2975 (2024). https://doi.org/10.1007/s11357-024-01098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01098-z

Keywords

Navigation