Skip to main content
Log in

Active decoupling control of the three-phase voltage source converter under nonlinear AC current

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

The low-harmonic (LOH) voltage of the DC link of three-phase voltage source converter (VSC) requires a large aluminum electrolytic capacitor for suppression under nonlinear AC current. Consequently, this work proposes an active decoupling control method combining DC-link LOH voltage closed loop and LOH current feedforward based on a DC–DC converter. This methodology effectively transfers the DC-link LOH voltage to the smaller-sized decoupling capacitor in the DC–DC converter, thereby reducing the number of capacitors required to stabilize of the VSC DC-link voltage. This work first investigates the relationship between the DC-link LOH voltage and the VSC nonlinear current. Second, a mathematical model for the decoupling capacitor voltage is derived, indicating that its voltage form is complex under nonlinear AC current, making direct voltage control arduous. Subsequently, the principle and design process of the proposed active decoupling control strategy are analyzed in detail. A dedicated fast-response filter structure is also utilized to extract the feedback LOH voltage and feedforward LOH current in the DC link. Meanwhile, a simple control strategy for the DC component of the decoupling capacitor voltage is proposed to improve the utilization of the decoupling capacitor. Finally, the effectiveness and correctness of the method are experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available upon request from the corresponding author.

References

  1. Dong, Z., Chen, Y., Feng, K., Liu, C.: Multivector-based model predictive current control with zero-sequence current suppression for three-phase series-end winding permanent magnet synchronous motor drives. IEEE Trans. Transp. Electrification 9(2), 3282–3294 (2023)

    Article  Google Scholar 

  2. Pei, X., Chen, C., Kang, Y.: Analysis of voltage ripple and design for DC-Link capacitor in three-phase voltage source inverters. IEEE Trans. Power Electron. 30(10), 5401–5412 (2015)

    Article  Google Scholar 

  3. Wang, T., Lu, S.: Analysis of the DC-link current for the single-phase H-bridge inverter under harmonic output currents. IEEE J. Emerg. Sel. Top. Power Electron. 7(4), 2170–2183 (2019)

    Article  Google Scholar 

  4. Wang, T., Lu, S.: DC-Link current computational methods for three phase inverter with low order harmonic output current. IET Power Electron. 12(4), 878–890 (2019)

    Article  Google Scholar 

  5. Vasiladiotis, M., Rufer, A.: Dynamic analysis and state feedback voltage control of single-phase active rectifiers with DC-link resonant filters. IEEE Trans. Power Electron. 29(10), 5620–5633 (2014)

    Article  Google Scholar 

  6. Sarikhani, A., Takantape, M.M., Hamzeh, M.: A transformerless common-ground three-switch single-phase inverter for photovoltaic systems. IEEE Trans. Power Electron. 35(9), 8902–8909 (2020)

    Article  Google Scholar 

  7. Liu, Y., Zhang, W., Sun, Y.: Review and comparison of control strategies in active power decoupling. IEEE Trans. Power Electron. 36(12), 14436–14455 (2021)

    Article  Google Scholar 

  8. Xu, S., Cao, B., Chang, L., Shao, R.: Pulse energy modulation for a single-phase bridge inverter with active power decoupling capability. IEEE J. Emerg. Sel. Top. Power Electron. 9(2), 2014–2026 (2021)

    Article  Google Scholar 

  9. Qin, Z., Tang, Y., Loh, P.C., Blaabjerg, F.: Benchmark of ac and DC active power decoupling circuits for second order harmonic mitigation in kW-scale single-phase inverters. IEEE J. Emerg. Sel. Top. Power Electron. 4(1), 15–25 (2016)

    Article  Google Scholar 

  10. Zhang, L., Ruan, X.: Control schemes for reducing the second harmonic current in two-stage single-phase converter: an overview from dc-bus port impedance characteristic. IEEE Trans. Power Electron. 34(10), 10341–10358 (2019)

    Article  Google Scholar 

  11. Wang, R., et al.: A high power density single-phase PWM rectifier with active ripple energy storage. IEEE Trans. Power Electron. 26(5), 1430–1443 (2011)

    Article  Google Scholar 

  12. Chao, K., Cheng, P., Shimizu, T.: New control methods for single phase PWM regenerative rectifier with power decoupling function. In: International Conference on Power Electronics and Drive Systems (PEDS), pp. 1091–1096 (2009)

  13. Li, H., Zhang, K., Zhao, H.: DC-link active power filter for high power single-phase PWM converters. J. Power Electron. 12(3), 458–467 (2012)

    Article  Google Scholar 

  14. Li, S., Lee, A.T.L., Tan, S., Hui, S.Y.R.: Plug-and-play voltage ripple mitigator for DC links in hybrid AC–DC power grids with local bus-voltage control. IEEE Trans. Ind. Electron. 65(1), 687–698 (2018)

    Article  Google Scholar 

  15. Yuan, H., Li, S., Qi, W., Tan, S., Hui, S.: On nonlinear control of single-phase converters with active power decoupling function. IEEE Trans. Power Electron. 34(6), 5903–5915 (2019)

    Article  Google Scholar 

  16. Bhowmick, S., Umanand, L.: Design and analysis of the low device stress active power decoupling for single-phase grid connection for a wide range of power factor. IEEE J. Emerg. Sel. Top. Power Electron. 6(4), 1921–1931 (2018)

    Article  Google Scholar 

  17. Xu, J., Soeiro, T.B., Gao, F., Tang, H., Bauer, P.: Minimum switching losses discontinuous PWM strategy for bidirectional single-phase AC–DC converter with active power decoupling circuit. IEEE Trans. Power Electron. 36(5), 6118–6132 (2021)

    Article  Google Scholar 

  18. Ren, C., Han, X., Wang, L., et al.: High performance three-phase PWM converter with reduced dc-link capacitor under unbalanced ac voltage conditions. IEEE Trans. Ind. Electron. 65(2), 1041–1050 (2018)

    Article  Google Scholar 

  19. Zhang, L., Shi, D., Yang, T., Wang, K., Tang, Y., Loh, W.K.: Partial power processing for power decoupling network in three-phase three-leg four-wire three-level T-type inverter with reduced split DC-bus capacitance. IEEE Trans. Ind. Electron. 69(4), 3643–3655 (2022)

    Article  Google Scholar 

  20. Xu, X., Su, M., Sun, Y., Guo, B., Wang, H., Xu, G.: Four-switch single-phase common-ground PV Inverter with active power decoupling. IEEE Trans. Ind. Electron. 69(3), 3223–3228 (2022)

    Article  Google Scholar 

  21. Anuchin, A., Shpak, D., Ahmed, M.R., Stolyarov, E., Surnin, D., Acedo, J.P.: Nested loop control of a buck converter under variable input voltage and load conditions. 2020 55th international universities power engineering conference (UPEC), pp. 1–5. Turin, Italy (2020).

Download references

Acknowledgements

This work is supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202203221), the Natural Science Foundation of Chongqing, China, Grant number cstc2021jcyj-msxmX0161 and the Doctoral Research Foundation of Chongqing Industry Polytechnic College (2022GZYBSZK1-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Wang, T. & Miao, Y. Active decoupling control of the three-phase voltage source converter under nonlinear AC current. J. Power Electron. (2024). https://doi.org/10.1007/s43236-024-00811-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43236-024-00811-7

Keywords

Navigation