Skip to main content
Log in

Geometric principle-based deadbeat predictive control with low-torque ripple for dual three-phase permanent magnet synchronous motors

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Severe torque ripple and determination of the weighting factor pose significant challenges in traditional predictive torque control. A deadbeat predictive torque control scheme designed to minimize torque ripple for dual three-phase permanent magnet synchronous motors is proposed in this paper, eliminating the need for a cost function. Additionally, a novel method for calculating action time based on geometric principles is proposed. First, the deadbeat direct torque and flux control is employed to obtain the reference voltage vector. To reduce the computational burden, the nearest virtual voltage vector is selected directly without a cost function. Subsequently, the torque ripple is further reduced by calculating the corresponding action time based on the introduced geometric relationship in the volt-sec coordinate system. Finally, experimental results demonstrate the effectiveness of the torque ripple reduction method under different working conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Duran, M., Levi, E., Barrero, F.: Multiphase Electric Drives. Introduction, pp. 1–26. Wiley, New York (2017)

    Google Scholar 

  2. Levi, E.: Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines. IEEE Trans. Industr. Electron. 63(1), 433–448 (2016)

    Article  Google Scholar 

  3. Hu, S., Liang, Z., Zhang, W., et al.: Research on the integration of hybrid energy storage system and dual three-phase pmsm drive in ev. IEEE Trans. Industr. Electron. 65(8), 6602–6611 (2018)

    Article  Google Scholar 

  4. Jung, E., Yoo, H., Sul, S.K., et al.: A nine-phase permanent-magnet motor drive system for an ultrahigh-speed elevator. IEEE Trans. Ind. Appl. 48(3), 987–995 (2012)

    Article  Google Scholar 

  5. Che, H.S., Levi, E., Jones, M., et al.: Operation of a six-phase induction machine using series-connected machine-side converters. IEEE Trans. Industr. Electron. 61(1), 164–176 (2014)

    Article  Google Scholar 

  6. Aissa, O., Moulahoum, S.C., et al.: Analysis and experimental evaluation of shunt active power filter for power quality improvement based on predictive direct power control. Environ. Sci. Pollut. Res. 25(25), 24548–24560 (2018)

    Article  Google Scholar 

  7. Bouafassa, A., Rahmani, L., Babes, B., Bayindir, R.: Experimental design of a finite state model predictive control for improving power factor of boost rectifier. In: 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pp. 1556–1561. Rome, Italy (2015)

  8. Babes, B., Hamouda, N., Kahla, S., Amar, H., Ghoneim, S.S.M.: Fuzzy model-based multivariable predictive control design for rapid and efficient speed-sensorless maximum power extraction of renewable wind generators. Electr. Eng. Electromech. 3, 51–62 (2022)

    Article  Google Scholar 

  9. Hamouda, N., Babes, B., Kahla, S., Soufi, Y., Petzoldt, J., & Ellinger, T.: Predictive control of a grid connected PV system incorporating active power filter functionalities. In: 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), Tebessa, Algeria, pp. 1–6 (2019)

  10. Rodriguez, J., Kennel, R.M., Espinoza, J.R., et al.: High-performance control strategies for electrical drives: An experimental assessment. IEEE Trans. Industr. Electron. 59(2), 812–820 (2012)

    Article  Google Scholar 

  11. Alsofyani, I.M., Lee, K.B.: Enhanced performance of constant frequency torque controller–based direct torque control of induction machines with increased torque-loop bandwidth. IEEE Trans. Ind. Electron. 67(12), 10168–10179 (2020)

    Article  Google Scholar 

  12. Hamouda, N., Babes, B., Kahla, S., Soufi, Y.: Real-time implementation of grid-connected wind energy systems: predictive current controller. In: 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), Tebessa, Algeria, pp. 1–6 (2019)

  13. Jarzebowicz, L.: Impact of low switching-to-fundamental frequency ratio on predictive current control of PMSM: a simulation study. In: 2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), Moscow, Russia, pp. 1–5 (2018)

  14. Luo, Y., Liu, C.: A simplified model predictive control for a dual three-phase pmsm with reduced harmonic currents. IEEE Trans. Ind. Electron. 65(11), 9079–9089 (2018)

    Article  Google Scholar 

  15. Yu, B., Song, W., Guo, Y., et al.: Virtual voltage vector-based model predictive current control for five-phase vsis with common-mode voltage reduction. IEEE Trans. Transp. Electrif. 7(2), 706–717 (2021)

    Article  Google Scholar 

  16. Yang, G., Yang, J., Li, S., et al.: A sequential direct torque control scheme for seven-phase induction machines based on virtual voltage vectors. IEEE Trans. Ind. Appl. 57(4), 3722–3734 (2021)

    Article  Google Scholar 

  17. Gonzalez-Prieto, I., Duran, M.J., Aciego, J.J., et al.: Model predictive control of six-phase induction motor drives using virtual voltage vectors. IEEE Trans. Ind. Electron. 65(1), 27–37 (2018)

    Article  Google Scholar 

  18. Zhang, Y., Yang, H.: Model predictive torque control of induction motor drives with optimal duty cycle control. IEEE Trans. Power Electron. 29(12), 6593–6603 (2014)

    Article  Google Scholar 

  19. Zhou, Z., Xia, C., Shi, T., et al.: Model predictive direct duty-cycle control for pmsm drive systems with variable control set. IEEE Trans. Ind. Electron. 68(4), 2976–2987 (2021)

    Article  Google Scholar 

  20. Amiri, M., Milimonfared, J., Khaburi, D.A.: Predictive torque control implementation for induction motors based on discrete space vector modulation. IEEE Trans. Ind. Electron. 65(9), 6881–6889 (2018)

    Article  Google Scholar 

  21. Wang, Y., Wang, X., Xie, W., et al.: Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives. IEEE Trans. Ind. Electron. 64(5), 3537–3547 (2017)

    Article  Google Scholar 

  22. Kang, J.K., Sul, S.K.: New direct torque control of induction motor for minimum torque ripple and constant switching frequency. IEEE Trans. Ind. Appl. 35(5), 1076–1082 (1999)

    Article  Google Scholar 

  23. Zhang, Y., Zhu, J.: Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency. IEEE Trans. Power Electron. 26(1), 235–248 (2011)

    Article  Google Scholar 

  24. Luo, Y., Liu, C.: Model predictive control for a six-phase pmsm motor with a reduced-dimension cost function. IEEE Trans. Ind. Electron. 67(2), 969–979 (2020)

    Article  Google Scholar 

  25. Zhang, X., Hou, B.: Double vectors model predictive torque control without weighting factor based on voltage tracking error. IEEE Trans. Power Electron. 33(3), 2368–2380 (2018)

    Article  Google Scholar 

  26. Anuchin, A., Aliamkin, D., Lashkevich, M., Podzorova, V., Aarniovuori, L., Kennel, R.: Model predictive control with reduced integration step size for continuous control of an IPM motor. In: 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Quanzhou, China, pp. 1–6 (2019)

  27. Kodumur Meesala, R.E., Kunisetti, V.P.K., Kumar Thippiripati, V.: Enhanced predictive torque control for open end winding induction motor drive without weighting factor assignment. IEEE Trans. Power Electron. 34(1), 503–513 (2019)

    Article  Google Scholar 

  28. Lin, X., Huang, W., Jiang, W., et al.: Predictive torque control for pmsm based on weighting factor elimination and fast voltage vector selection. IEEE J. Emerg. Select. Top. Power Electron. 8(4), 3736–3750 (2020)

    Article  Google Scholar 

  29. Zhao, Y., Lipo, T.A.: Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Trans. Ind. Appl. 31(5), 1100–1109 (1995)

    Article  Google Scholar 

  30. Lee, J.S., Choi, C.H., Seok, J.K., et al.: Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator flux linkage observer. IEEE Trans. Ind. Appl. 47(4), 1749–1758 (2011)

    Article  Google Scholar 

  31. Luo, Y., Liu, C.: Elimination of harmonic currents using a reference voltage vector based-model predictive control for a six-phase pmsm motor. IEEE Trans. Power Electron. 34(7), 6960–6972 (2019)

    Article  Google Scholar 

  32. Li, X., Xue, Z., Yan, X., Zhang, L., Ma, W., Hua, W.: Low-complexity multivector-based model predictive torque control for PMSM with voltage preselection. IEEE Trans. Power Electron. 36(10), 11726–11738 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by Shanghai Natural Science Foundation under Grant 19ZR1418600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfei Zhao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, Y., Zhao, J. et al. Geometric principle-based deadbeat predictive control with low-torque ripple for dual three-phase permanent magnet synchronous motors. J. Power Electron. (2024). https://doi.org/10.1007/s43236-024-00813-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43236-024-00813-5

Keywords

Navigation