Skip to main content
Log in

Betti numbers of nearly \(G_2\) and nearly Kähler 6-manifolds with Weyl curvature bounds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we use the Weitzenböck formulas to get information about the Betti numbers of compact nearly \(G_2\) and compact nearly Kähler 6-manifolds. First, we establish estimates on two curvature-type self adjoint operators on particular spaces assuming bounds on the sectional curvature. Then using the Weitzenböck formulas on harmonic forms, we get results of the form: if certain lower bounds hold for these curvature operators then certain Betti numbers are zero. Finally, we combine both steps above to get sufficient conditions of vanishing of certain Betti numbers based on the bounds on the sectional curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, B., Semmelmann, U.: Deformations of nearly parallel \({\rm G}_2\)-structures. Asian J. Math. 16(4), 713–744 (2012)

    Article  MathSciNet  Google Scholar 

  2. Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing spinors on Riemannian manifolds. Teubner-Texte zur Mathematik, 124, Teubner, Stuttgart (1991)

  3. Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10. Springer, Berlin (1987)

  4. Bourguignon, J.-P., Karcher, H.: Curvature operators: pinching estimates and geometric examples. Ann. Sci. École Norm. Sup. (4) 11(1), 71–92 (1978)

    Article  MathSciNet  Google Scholar 

  5. Cheeger, J., Ebin, D.G.: Comparison theorems in Riemannian geometry. Revised reprint of the 1975 original, pp. x+168. AMS Chelsea Publishing, Providence, RI (2008). ISBN: 978-0-8218-4417-5

  6. Chemtov, M., Karigiannis, S.: Observations about the Lie algebra \({\mathfrak{g}}_2 \subset \mathfrak{so}(7)\), associative 3-planes, and \(\mathfrak{so}(4)\) subalgebras. Expo. Math. 40(4), 845–869 (2022)

  7. Dwivedi, S., Singhal, R.: Deformation theory of nearly \(\rm G_2\) manifolds. In: Communications in Analysis and Geometry. arXiv:2007.02497 (2020-07)

  8. Foscolo, L.: Deformation theory of nearly Kähler manifolds. J. Lond. Math. Soc. (2) 95(2), 586–612 (2017)

    Article  MathSciNet  Google Scholar 

  9. Iliashenko, A.: Betti numbers of nearly \(G_2\) and nearly Kähler manifolds with Weyl curvature bounds, in peer review for Geometriae Dedicata. arxiv.org/abs/2303.18208 (2023)

  10. Karigiannis, S.: Flows of \(G_2\)-structures. I. Q. J. Math. 60(4), 487–522 (2009)

    Article  MathSciNet  Google Scholar 

  11. Moroianu, A., Nagy, P.-A., Semmelmann, U.: Unit Killing vector fields on nearly Kähler manifolds. Int. J. Math. 16(3), 281–301 (2005)

    Article  Google Scholar 

  12. Moroianu, A., Nagy, P.-A., Semmelmann, U.: Deformations of nearly Kähler structures. Pac. J. Math. 235(1), 57–72 (2008)

    Article  Google Scholar 

  13. Petersen, P., Wink, M.: New curvature conditions for the Bochner technique. Invent. Math. 224(1), 33–54 (2021)

    Article  MathSciNet  Google Scholar 

  14. Russo, G.: The Einstein condition on nearly Kähler six-manifolds. Expo. Math. 39(3), 384–410 (2021)

    Article  MathSciNet  Google Scholar 

  15. Semmelmann, U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245(3), 503–527 (2003)

    Article  MathSciNet  Google Scholar 

  16. Semmelmann, U., Weingart, G.: The standard Laplace operator. Manuscripta Math. 158(1–2), 273–293 (2019)

    Article  MathSciNet  Google Scholar 

  17. Semmelmann, U., Wang, C., Wang, M.Y.-K.: On the linear stability of nearly Kähler 6-manifolds. Ann. Global Anal. Geom. 57(1), 15–22 (2020)

    Article  MathSciNet  Google Scholar 

  18. Semmelmann, U., Wang, C., Wang, M.Y.-K.: Linear instability of Sasaki Einstein and nearly parallel \(G_2\) manifolds. Int. J. Math. 33(06), 2250042 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank my supervisor Spiro Karigiannis for helpful discussions and Uwe Semmelmann who communicated with my supervisor about some of the topics and sent me detailed and useful feedback on an earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Iliashenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Apendix

Apendix

Here we include the proof of Proposition 5.3 which says that the following identities hold:

$$\begin{aligned}{} & {} \bullet ~\psi ^{+}_{ijk} \omega _{ak} = -\psi ^{-}_{ija}.{} \end{aligned}$$
(7.1)
$$\begin{aligned}{} & {} \bullet ~\psi ^{-}_{ijk} \omega _{ak} = \psi ^{+}_{ija}.{}\end{aligned}$$
(7.2)
$$\begin{aligned}{} & {} \bullet ~\psi ^{+}_{ijk} \omega _{jk} = 0 =\psi ^{-}_{ijk} \omega _{jk}.{}\end{aligned}$$
(7.3)
$$\begin{aligned}{} & {} \bullet ~\psi ^{+}_{ijk} \psi ^{+}_{abk} = \delta _{ia} \delta _{jb}-\delta _{ib} \delta _{ja} - \omega _{ia} \omega _{jb} +\omega _{ib} \omega _{ja}.{}\end{aligned}$$
(7.4)
$$\begin{aligned}{} & {} \bullet ~\psi ^{+}_{ijk} \psi ^{+}_{ajk} = 4 \delta _{ik}.\text { (contraction of the previous one)}{}\end{aligned}$$
(7.5)
$$\begin{aligned}{} & {} \bullet ~\psi ^{+}_{ijk} \psi ^{-}_{abk} = \delta _{ia} \omega _{jb}+\delta _{jb} \omega _{ia}-\delta _{ib} \omega _{ja}-\delta _{ja} \omega _{ib}.{}\end{aligned}$$
(7.6)
$$\begin{aligned}{} & {} \bullet ~\psi ^{+}_{ijk} \psi ^{-}_{ajk} = 4 \omega _{ia}.\text { (contraction of the previous one)}{}\end{aligned}$$
(7.7)
$$\begin{aligned}{} & {} \bullet ~\psi ^{-}_{ijk} \psi ^{-}_{abk} = \delta _{ia} \delta _{jb}-\delta _{ib} \delta _{ja} - \omega _{ia} \omega _{jb} +\omega _{ib} \omega _{ja}. (same as \psi ^{+}_{ijk} \psi ^{+}_{abk}){}\end{aligned}$$
(7.8)
$$\begin{aligned}{} & {} \bullet ~\psi ^{-}_{ijk} \psi ^{-}_{ajk} = 4 \delta _{ik}.\text { (contraction of the previous one)}{}\end{aligned}$$
(7.9)
$$\begin{aligned}{} & {} \bullet ~\omega _{ik} (\star \omega )_{abck} = \delta _{ia} \omega _{bc}+\delta _{ib} \omega _{ca}+\delta _{ic} \omega _{ab}.{}\end{aligned}$$
(7.10)
$$\begin{aligned}{} & {} \bullet ~\omega _{ik} (\star \omega )_{abik} = 4 \omega _{ab}.\text { (contraction of the previous one)}{}\end{aligned}$$
(7.11)
$$\begin{aligned}{} & {} \bullet ~\psi ^{+}_{ijk} (\star \omega )_{abck} =- \delta _{ia} \psi ^{+}_{jbc}-\delta _{ib} \psi ^{+}_{ajc}-\delta _{ic} \psi ^{+}_{abj}+\delta _{aj} \psi ^{+}_{ibc}+\delta _{bj} \psi ^{+}_{aic}+\delta _{cj} \psi ^{+}_{abi} - \omega _{ij} \psi ^{-}_{abc}.{}\end{aligned}$$
(7.12)
$$\begin{aligned}{} & {} \bullet ~\psi ^{+}_{ijk} (\star \omega )_{abck} = -\psi ^{-}_{ija} \omega _{bc}-\psi ^{-}_{ijb} \omega _{ca}-\psi ^{-}_{ijc} \omega _{ab}. (alternative expression to the previous one){}\end{aligned}$$
(7.13)
$$\begin{aligned}{} & {} \bullet ~\psi ^{+}_{ijk} (\star \omega )_{abjk} =2\psi ^{+}_{iab}.\text { (contraction of the previous one)}{}\end{aligned}$$
(7.14)
$$\begin{aligned}{} & {} \bullet ~\psi ^{-}_{ijk} (\star \omega )_{abck}=\psi ^{+}_{ija} \omega _{bc}+\psi ^{+}_{ijb} \omega _{ca}+\psi ^{+}_{ijc} \omega _{ab}.{}\end{aligned}$$
(7.15)
$$\begin{aligned}{} & {} \bullet ~\psi ^{-}_{ijk} (\star \omega )_{abjk} = 2\psi ^{-}_{iab}.\text { (contraction of the previous one)}{}\end{aligned}$$
(7.16)
$$\begin{aligned}{} & {} \bullet ~(\star \omega )_{ijkl} (\star \omega )_{abkl} = 2 \delta _{ia}\delta _{jb} - 2 \delta _{ib}\delta _{ja}+2 \omega _{ij} \omega _{ab}.{}\end{aligned}$$
(7.17)
$$\begin{aligned}{} & {} \bullet ~(\star \omega )_{ijkl} (\star \omega )_{ajkl} = 12 \delta _{ia}.\text { (contraction of the previous one)}{} \end{aligned}$$
(7.18)

Proof

We repeatedly use (5.1) along with \(G_2\)-contraction identities. For (7.1):

$$\begin{aligned} \psi ^{+}_{ijk} \omega _{ak}&= \sum _{k=1}^{6} \varphi _{ijk}(-\varphi _{0ak})\\&= -\sum _{k=0}^{6} \varphi _{ijk}\varphi _{0ak}\\&= -(\delta _{i0} \delta _{ja}-\delta _{ia} \delta _{j0} - \psi _{ij0a})\\&= \psi _{0ija}\\&= -\psi ^{-}_{ija}. \end{aligned}$$

Contracting both sides of (7.1) with \(w_{au}\) we get:

$$\begin{aligned} \psi ^{+}_{ijk} \omega _{ak} \omega _{au}&= -\psi ^{-}_{ija} \omega _{au}\\ \psi ^{+}_{ijk} \delta _{ku}&= \psi ^{-}_{ija} \omega _{ua}\\ \psi ^{+}_{iju}&=\psi ^{-}_{ija} \omega _{ua}, \end{aligned}$$

which gives us (7.2).

Contracting on (7.1) and (7.2) on ja immediately gives (7.3).

Next, for (7.4):

$$\begin{aligned} \psi ^{+}_{ijk} \psi ^{+}_{abk}&= \sum _{k=1}^{6} \varphi _{ijk}\varphi _{abk}\\&= \sum _{p=0}^{6} \varphi _{ijk}\varphi _{abk}- \varphi _{ij0}\varphi _{ab0}\\&=(\delta _{ia} \delta _{jb}-\delta _{ib} \delta _{ja} - \psi _{ijab}) - \omega _{ij} \omega _{ab}\\&=(\delta _{ia} \delta _{jb}-\delta _{ib} \delta _{ja}) +( (\star \omega )_{ijab}- \omega _{ij} \omega _{ab}).\\&=\delta _{ia} \delta _{jb}-\delta _{ib} \delta _{ja} + \omega _{ja} \omega _{ib} +\omega _{bj} \omega _{ia}\text { (by Lemma }~??)\\&=\delta _{ia} \delta _{jb}-\delta _{ib} \delta _{ja} - \omega _{ia} \omega _{jb} +\omega _{ib} \omega _{ja}. \end{aligned}$$

Contracting (7.4) on jb gives us (7.5):

$$\begin{aligned} \psi ^{+}_{ijk} \psi ^{+}_{ajk}&= 6\delta _{ia} -\delta _{ia} + \omega _{ij} \omega _{ja}\\&= 6\delta _{ia} -\delta _{ia} -\delta _{ia}\\&= 4\delta _{ia}. \end{aligned}$$

Next, for (7.6):

$$\begin{aligned} \psi ^{+}_{ijk} \psi ^{-}_{abk}&= \sum _{k=1}^{6} \varphi _{ijk} (-\psi _{0abk})\\&= -\sum _{k=0}^{6} \varphi _{ijk} \psi _{0abk}\\&= -(\delta _{i0} \varphi _{jab}+\delta _{ia} \varphi _{0jb}+\delta _{ib} \varphi _{0aj}-\delta _{0j} \varphi _{iab}-\delta _{aj} \varphi _{0ib}-\delta _{bj} \varphi _{0ai})\\&= \delta _{ia} \omega _{jb}+\delta _{ib} \omega _{aj}-\delta _{aj} \omega _{ib}-\delta _{bj} \omega _{ai}\\&= \delta _{ia} \omega _{jb}+\delta _{jb} \omega _{ia}-\delta _{ib} \omega _{ja}-\delta _{ja} \omega _{ib}. \end{aligned}$$

Contracting (7.6) on jb will give us (7.7):

$$\begin{aligned} \psi ^{+}_{ijk} \psi ^{-}_{ajk}&= 6 \omega _{ia} - \omega _{ia} - \omega _{ia}\\&= 4\omega _{ia}. \end{aligned}$$

Next, we show that \(\psi ^{-}_{ijk} \psi ^{-}_{abk} = \psi ^{+}_{ijk} \psi ^{+}_{abk}\), which means that (7.8) and (7.4) are the same. Using (7.1), we have:

$$\begin{aligned} \psi ^{-}_{ijk} \psi ^{-}_{abk}&=\psi ^{+}_{ijs} \omega _{ks} \psi ^{+}_{abt} \omega _{kt}\\&= \psi ^{+}_{ijs} \psi ^{+}_{abt} \delta _{st}\\&=\psi ^{+}_{ijs} \psi ^{+}_{abs}. \end{aligned}$$

Thus, we also get (7.9):

$$\begin{aligned} \psi ^{-}_{ijk} \psi ^{-}_{ajk} = \psi ^{+}_{ijk} \psi ^{+}_{ajk} = 4 \delta _{ia}. \end{aligned}$$

Next, for (7.10):

$$\begin{aligned} \omega _{ik} (\star \omega )_{abck}&= \sum _{k=1}^6 (-\varphi _{0ik}) (-\psi _{abck})\\&= \sum _{k=0}^6 \varphi _{0ik} \psi _{abck}\\&= \delta _{0a} \varphi _{ibc}+\delta _{0b} \varphi _{aic}+\delta _{0c} \varphi _{abi}-\delta _{ai} \varphi _{0bc}-\delta _{bi} \varphi _{a0c}-\delta _{ci} \varphi _{ab0}\\&= \delta _{ia} \omega _{bc}+\delta _{ib} \omega _{ca}+\delta _{ic} \omega _{ab}. \end{aligned}$$

Contracting (7.10) on ic yields (7.11):

$$\begin{aligned} \omega _{ik} (\star \omega )_{abik}&=\omega _{ba}+\omega _{ba}+6 \omega _{ab}\\&= 4 \omega _{ab}. \end{aligned}$$

For the next identity, there are two ways of computing the desired contractions yielding two different expressions (7.12) and (7.13). First, we use the usual way:

$$\begin{aligned} \psi ^{+}_{ijk} (\star \omega )_{abck}&= \sum _{k=1}^{6} \varphi _{ijk}(-\psi _{abck})\\&= -\sum _{k=0}^{6} \varphi _{ijk}\psi _{abck} + \varphi _{ij0}\psi _{abc0}\\&= -(\delta _{ia} \varphi _{jbc}+\delta _{ib} \varphi _{ajc}+\delta _{ic} \varphi _{abj}-\delta _{aj} \varphi _{ibc}-\delta _{bj} \varphi _{aic}-\delta _{cj} \varphi _{abi}) + (-\omega _{ij}) \psi ^{-}_{abc}\\&= - \delta _{ia} \psi ^{+}_{jbc}-\delta _{ib} \psi ^{+}_{ajc}-\delta _{ic} \psi ^{+}_{abj}+\delta _{aj} \psi ^{+}_{ibc}+\delta _{bj}\psi ^{+}_{aic}+\delta _{cj} \psi ^{+}_{abi} - \omega _{ij} \psi ^{-}_{abc}. \end{aligned}$$

Second, we can also use the previous results to get:

$$\begin{aligned} \psi ^{+}_{ijk} (\star \omega )_{abck}&= \psi ^{-}_{iju} \omega _{ku} (\star \omega )_{abck}\\&= -\psi ^{-}_{iju} \omega _{uk} (\star \omega )_{abck}\\&= -\psi ^{-}_{iju} (\delta _{au} \omega _{bc}+\delta _{bu} \omega _{ca}+\delta _{cu} \omega _{ab})\\&= -\psi ^{-}_{ija} \omega _{bc}-\psi ^{-}_{ijb} \omega _{ca}-\psi ^{-}_{ijc} \omega _{ab}. \end{aligned}$$

Note that both contractions of (7.12) and (7.13) on jc yiled the same result (7.14):

$$\begin{aligned} \psi ^{+}_{ijk} (\star \omega )_{abjk}&= -\psi ^{+}_{abi}+ \psi ^{+}_{iba}+ \psi ^{+}_{aib}+6 \psi ^{+}_{abi} - \omega _{ij} \psi ^{-}_{abj}\\&= - \psi ^{+}_{iab}- \psi ^{+}_{iab}- \psi ^{+}_{iab}+6 \psi ^{+}_{iab} - \psi ^{+}_{abi}\\&=2 \psi ^{+}_{iab}, \end{aligned}$$

and

$$\begin{aligned} \psi ^{+}_{ijk} (\star \omega )_{abjk}&= -\psi ^{-}_{ija} \omega _{bj}-\psi ^{-}_{ijb} \omega _{ja}\\&= \psi ^{-}_{iaj} \omega _{bj}-\psi ^{-}_{ibj} \omega _{aj}\\&= \psi ^{+}_{iab} -\psi ^{+}_{iba}\\&=2 \psi ^{+}_{iab}. \end{aligned}$$

Since the second way of computing the contraction of \(\psi ^{+}\) and \(\star \omega \) gave us a nicer expression, we use it again for (7.15):

$$\begin{aligned} \psi ^{-}_{ijk} (\star \omega )_{abck}&= -\psi ^{+}_{iju} \omega _{ku} (\star \omega )_{abck}\\&= \psi ^{+}_{iju} \omega _{uk} (\star \omega )_{abck}\\&= \psi ^{+}_{iju} (\delta _{au} \omega _{bc}+\delta _{bu} \omega _{ca}+\delta _{cu} \omega _{ab})\\&= \psi ^{+}_{ija} \omega _{bc}+\psi ^{+}_{ijb} \omega _{ca}+\psi ^{+}_{ijc} \omega _{ab}. \end{aligned}$$

Contracting (7.15) on jc yields (7.16):

$$\begin{aligned} \psi ^{-}_{ijk} (\star \omega )_{abjk}&= \psi ^{+}_{ija} \omega _{bj}+\psi ^{+}_{ijb} \omega _{ja}\\&= -\psi ^{+}_{iaj} \omega _{bj}+\psi ^{+}_{ibj} \omega _{aj}\\&= \psi ^{-}_{iab} - \psi ^{-}_{iba}\\&=2 \psi ^{-}_{iab}. \end{aligned}$$

Finally, we compute (7.17):

$$\begin{aligned} (\star \omega )_{ijkl} (\star \omega )_{abkl} =&\sum _{k,l=1}^6 \psi _{ijkl}\psi _{abkl}\\ =&\sum _{k,l=0}^6 \psi _{ijkl}\psi _{abkl}-\sum _{k=0}^6 \psi _{ijk0}\psi _{abk0}-\sum _{l=0}^6 \psi _{ij0l}\psi _{ab0l}\\ =&\sum _{k,l=0}^6 \psi _{ijkl}\psi _{abkl}-2\sum _{k=1}^6 \psi ^{-}_{ijk}\psi ^{-}_{abk}\\ =&(4 \delta _{ia}\delta _{jb} - 4 \delta _{ib}\delta _{ja} - 2\psi _{ijab})-2( \delta _{ia} \delta _{jb}-\delta _{ib} \delta _{ja} - \omega _{ia} \omega _{jb} +\omega _{ib} \omega _{ja})\\ =&2 \delta _{ia}\delta _{jb} - 2 \delta _{ib}\delta _{ja}+2 ((\star \omega )_{ijab} + \omega _{ia}\omega _{jb} + \omega _{aj}\omega _{ib})\\ =&2 \delta _{ia}\delta _{jb} - 2 \delta _{ib}\delta _{ja}+2 ((\omega _{ij} \omega _{ab} + \omega _{ja} \omega _{ib} +\omega _{bj} \omega _{ia}) + \omega _{ia}\omega _{jb} + \omega _{aj}\omega _{ib})\\ =&2 \delta _{ia}\delta _{jb} - 2 \delta _{ib}\delta _{ja}+2 \omega _{ij} \omega _{ab}. \end{aligned}$$

Contracting (7.17) on bj gives us (7.18):

$$\begin{aligned} (\star \omega )_{ijkl} (\star \omega )_{ajkl} = 12 \delta _{ia} - 2 \delta _{ia}+2 \delta _{ia}= 12 \delta _{ia}.\square \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliashenko, A. Betti numbers of nearly \(G_2\) and nearly Kähler 6-manifolds with Weyl curvature bounds. Geom Dedicata 218, 70 (2024). https://doi.org/10.1007/s10711-024-00920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-024-00920-4

Keywords

Mathematics Subject Classification

Navigation