Skip to main content
Log in

Pioglitazone ameliorates ischemia/reperfusion-induced acute kidney injury via oxidative stress attenuation and NLRP3 inflammasome

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) induced by renal ischemia/reperfusion injury (IRI) is a severe clinical condition. ROS accumulation, antioxidant pathways deficiency, and inflammation are involved in IRI. Pioglitazone (Pio) exerts anti-inflammatory and antioxidant effects. The aim of this study was to explore the protective effects of pioglitazone against IRI-induced AKI. Pathogen-free Sprague–Dawley (SD) rats were arbitrarily divided into four groups: Sham operation group Control (CON) group, CON + Pio group, I/R + Saline group, and I/R + Pio group. In addition, HK-2 cells were subjected to hypoxia and reoxygenation to develop an H/R model for investigation of the protective mechanism of Pio. Pretreatment with pioglitazone in the model rats reduced urea nitrogen and creatinine levels, histopathological scores, and cytotoxicity after IRI. Pioglitazone treatment significantly attenuated renal cell apoptosis, decreased cytotoxicity, increased Bcl-2 expression, and downregulated Bax expression. Besides, the levels of ROS and inflammatory factors, including NLRP3, ASC, pro-IL-1β, pro-caspase-1, cleaved-caspase-1, TNF-α, IL-6, and IL-1β, in I/R rats and H/R cells were normalized by the pioglitazone treatment. Pioglitazone improved IRI-induced AKI by attenuating oxidative stress and NLRP3 inflammasome activation. Therefore, pioglitazone has the potential to serve as a novel agent for renal IRI treatment and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data and material that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

AKI:

Acute kidney injury

I/R:

Ischemia/reperfusion

NLRP3:

Nod-like receptor protein 3

IRI:

Ischemia/reperfusion injury

ROS:

Reactive oxygen species

Pio:

Pioglitazone

SD:

Sprague–Dawley

CON:

Sham operation

H/R:

Hypoxia/reoxygenation

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

GST:

Glutathione transferase

GSH:

Glutathione

GSSG:

Oxidized glutathione

SOD:

Superoxide dismutase

HK-2:

Human kidney 2

PBS:

Phosphate-buffered saline

CCK-8:

Cell Counting Kit-8

References

  1. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96(5):1083–99.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gumbert SD, Kork F, Jackson ML, Vanga N, Ghebremichael SJ, Wang CY, et al. Perioperative acute kidney injury. Anesthesiology. 2020;132(1):180–204.

    Article  PubMed  Google Scholar 

  3. Medić B, Stojanović M, Rovčanin B, Kekić D, Škodrić SR, Jovanović GB, et al. Pioglitazone attenuates kidney injury in an experimental model of gentamicin-induced nephrotoxicity in rats. Sci Rep. 2019;9(7):13689.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal. 2016;25(12):657–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou G, Zhou Z, Xi X, Huang R, Hu H. Pioglitazone ameliorates renal ischemia-reperfusion injury via inhibition of NF-κB activation and inflammation in rats. Front Physiol. 2021;12: 707344.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaltenmeier C, Wang R, Popp B, Geller D, Tohme S, Yazdani HO. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury. Cells. 2022;11(14):2222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pefanis A, Ierino FL, Murphy JM, Cowan PJ. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int. 2019;96(2):291–301.

    Article  PubMed  Google Scholar 

  8. Su L, Zhang J, Gomez H, Kellum JA, Peng Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy. 2023;19(2):401–14.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang BH, Liu H, Yuan Y, Weng XD, Du Y, Chen H, et al. Knockdown of TRIM8 protects HK-2 cells against hypoxia/reoxygenation-induced injury by inhibiting oxidative stress-mediated apoptosis and pyroptosis via PI3K/Akt signal pathway. Drug Des Dev Ther. 2021;15:4973–83.

    Article  CAS  Google Scholar 

  10. Liu W, Gan Y, Ding Y, Zhang L, Jiao X, Liu L, et al. Autophagy promotes GSDME-mediated pyroptosis via intrinsic and extrinsic apoptotic pathways in cobalt chloride-induced hypoxia reoxygenation-acute kidney injury. Ecotoxicol Environ Saf. 2022;242:113881.

    Article  CAS  PubMed  Google Scholar 

  11. Devchand PR, Liu T, Altman RB, FitzGerald GA, Schadt EE. The pioglitazone trek via human PPAR gamma: from discovery to a medicine at the FDA and beyond. Front Pharmacol. 2018;9:1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH. Pioglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;2006(4):Cd006060.

    PubMed  PubMed Central  Google Scholar 

  13. Nesti L, Tricò D, Mengozzi A, Natali A. Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug. Cardiovasc Diabetol. 2021;20(1):109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yi HJ, Lee JE, Lee DH, Kim YI, Cho CB, Kim IS, et al. The role of NLRP3 in traumatic brain injury and its regulation by pioglitazone. J Neurosurg. 2019. https://doi.org/10.3171/2019.6.JNS1954.

    Article  PubMed  Google Scholar 

  15. Zhang H, Huang C, Zhang D, Zhu Y. Pioglitazone protects against hypoxia-induced cardiomyocyte apoptosis through inhibiting NLRP3/caspase-1 pathway in vivo and in vitro. Int Heart J. 2022;63(5):893–903.

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Xi X, Zhang S, Zou C, Kuang R, Ye Z, et al. Pioglitazone Protects against renal ischemia-reperfusion injury via the AMP-activated protein kinase-regulated autophagy pathway. Front Pharmacol. 2018;9:851.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zou C, Zhou Z, Tu Y, Wang W, Chen T, Hu H. Pioglitazone attenuates reoxygenation injury in renal tubular NRK-52E cells exposed to high glucose via inhibiting oxidative stress and endoplasmic reticulum stress. Front Pharmacol. 2019;10:1607.

    Article  CAS  PubMed  Google Scholar 

  18. Acar M, Sayhan Kaplan H, Erdem AF, Tomak Y, Turan G, Özdin M. Effects of dexmedetomidine on new oxidative stress markers on renal ischaemia-reperfusion injury in rats: thiol/disulphide homeostasis and the ischaemia-modified albumin. Arch Physiol Biochem. 2022;128(4):1115–20.

    Article  CAS  PubMed  Google Scholar 

  19. Choi HY, Moon SJ, Ratliff BB, Ahn SH, Jung A, Lee M, et al. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury. PLoS ONE. 2014;9(2): e87853.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zheng Z, Xu K, Li C, Qi C, Fang Y, Zhu N, et al. NLRP3 associated with chronic kidney disease progression after ischemia/reperfusion-induced acute kidney injury. Cell death discovery. 2021;7(1):324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu H, Zou C, Xi X, Shi Z, Wang G, Huang X. Protective effects of pioglitazone on renal ischemia-reperfusion injury in mice. J Surg Res. 2012;178(1):460–5.

    Article  CAS  PubMed  Google Scholar 

  22. Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta. 2022;1869(10): 119317.

    Article  CAS  Google Scholar 

  23. Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol. 2022;221(6):e202201159.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev. 2016;2016:2183026.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 2021;22(5):550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tapia-Abellán A, Angosto-Bazarra D, Martínez-Banaclocha H, de Torre-Minguela C, Cerón-Carrasco JP, Pérez-Sánchez H, et al. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol. 2019;15(6):560–4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019;570(7761):338–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11(4):1845–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang C, Hu Y, Gao J, Jiang J, Shi S, Wang J, et al. Dexmedetomidine pretreatment attenuates myocardial ischemia reperfusion induced acute kidney injury and endoplasmic reticulum stress in human and rat. Life Sci. 2020;257: 118004.

    Article  CAS  PubMed  Google Scholar 

  30. Yang CC, Sung PH, Chiang JY, Chai HT, Chen CH, Chu YC, et al. Combined tacrolimus and melatonin effectively protected kidney against acute ischemia-reperfusion injury. FASEB J. 2021;35(6): e21661.

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Zhang P, Song X, Cui H, Shen W. PPARγ mediates protective effect against hepatic ischemia/reperfusion injury via NF-κB pathway. J Invest Surg. 2022;35(8):1648–59.

    Article  PubMed  Google Scholar 

  32. DeFronzo RA, Inzucchi S, Abdul-Ghani M, Nissen SE. Pioglitazone: the forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc Dis Res. 2019;16(2):133–43.

    Article  CAS  PubMed  Google Scholar 

  33. Betz B, Schneider R, Kress T, Schick MA, Wanner C, Sauvant C. Rosiglitazone affects nitric oxide synthases and improves renal outcome in a rat model of severe ischemia/reperfusion injury. PPAR Res. 2012;2012: 219319.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reel B, Guzeloglu M, Bagriyanik A, Atmaca S, Aykut K, Albayrak G, et al. The effects of PPAR-γ agonist pioglitazone on renal ischemia/reperfusion injury in rats. J Surg Res. 2013;182(1):176–84.

    Article  CAS  PubMed  Google Scholar 

  35. Ali SM, Khalifa H, Mostafa DK, El Sharkawy A. Suppression of connective tissue growth factor mediates the renoprotective effect of sitagliptin rather than pioglitazone in type 2 diabetes mellitus. Life Sci. 2016;153:180–7.

    Article  CAS  PubMed  Google Scholar 

  36. Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol. 2019;40(11):1035–52.

    Article  CAS  PubMed  Google Scholar 

  37. Xiao YD, Huang YY, Wang HX, Wu Y, Leng Y, Liu M, et al. Thioredoxin-interacting protein mediates NLRP3 inflammasome activation involved in the susceptibility to ischemic acute kidney injury in diabetes. Oxid Med Cell Longev. 2016;2016:2386068.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tang TT, Lv LL, Pan MM, Wen Y, Wang B, Li ZL, et al. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis. 2018;9(3):351.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang YL, Wang RB, Li WY, Xia FZ, Liu L. Pioglitazone ameliorates retinal ischemia/reperfusion injury via suppressing NLRP3 inflammasome activities. Int J Ophthalmol. 2017;10(12):1812–8.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The graphical abstracts were created with BioRender software (BioRender.com).

Funding

This work was supported by the Natural Science Foundation of China (No. 82160371 to J.Z., No.82100869 and No.82360162 to P.Y.); Natural Science Foundation in Jiangxi Province grant (No.20212BAB216047 to P.Y., No.20224ACB216009 and No. 20212BAB216051 to J.Z.); the Jiangxi Province Thousands of Plans (No. jxsq2023201105 to P.Y.); Young Elite Scientists Sponsorship Program by JXAST (No. 2023QT05 to J.Z.); and the Hengrui Diabetes Metabolism Research Fund (No. Z-2017-26-2202-4 to P.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Zhenfeng Ye and Jing Zhang: reviewing, methodology, funding acquisition. Zhou Xu and Zhangwang Li: writing—original draft preparation. Gaomin Huang and Bin Tong: visualization and investigation. Panpan Xia and Yunfeng Shen: supervision. Honglin Hu and Jianyong Ma: software and validation. Peng Yu and Xiaoqing Xi: conceptualization and funding.

Corresponding authors

Correspondence to Peng Yu or Xiaoqing Xi.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical statement

All animal experiments were approved by the Ethical Committee on Animal Experiments in the Second Affiliate Hospital of Nanchang University (NO.: Review [2019] No. (033); ethical number: NCULAE-20221121086), in compliance with Chinese national or institutional guidelines for the care and use of animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Zhang, J., Xu, Z. et al. Pioglitazone ameliorates ischemia/reperfusion-induced acute kidney injury via oxidative stress attenuation and NLRP3 inflammasome. Human Cell (2024). https://doi.org/10.1007/s13577-024-01059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13577-024-01059-w

Keywords

Navigation