Skip to main content
Log in

Determination of Acetylcholinesterase Activity Based on Ratiometric Fluorescence Signal Sensing

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) plays an important role in the treatment of human diseases, environmental security and global food supply. In this study, the simple fluorescent indicators and MnO2 nanosheets were developed and integrated to establish a ratiometric fluorescence sensing system for the detection of AChE activity. Two fluorescence signals could be recorded independently at the same excitation wavelength, which extended the detection range and enhanced the visibility of results. Fluorescence of F-PDA was quenched by MnO2 nanosheets on account of inner filtering effect. Meanwhile, the nonfluorescent OPD was catalytically oxidized to 2,3-diaminophenazine by MnO2 nanosheets. The acetylcholine (ATCh) was catalytically hydrolyzed by AChE to enzymatic thiocholine, which decomposed MnO2 to Mn2+, recovered the fluorescence of F-PDA and reduced the emission of ox-OPD. Utilizing the fluorescence intensity ratio F468/F558 as the signal readout, the ratiometric fluorescence method was established to detect AChE activity. Under the excitation wavelength of 410 nm, the ratio F460/F558 against the AChE concentration demonstrated two linear relationships in the range 0.05 -1.0 and 1.0–50 U·L− 1 with a limit of detection (LOD) of 0.073 U·L− 1. The method was applied to the detection of AChE activity and the analysis of the inhibitor Huperzine-A. Due to the advantages of high sensitivity and favorable selectivity, the method possesses an application prospect in the activity deteceion of AChE and the screening of inhibitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Yan X, Song Y, Wu X, Zhu C, Su X, Du D, Lin Y (2017) Nanoscale 9:2317–2323. https://doi.org/10.1039/C6NR08473G

    Article  CAS  PubMed  Google Scholar 

  2. Liu D-M, Xu B, Dong C (2021) TrAC Trends Anal Chem 142:116320. https://doi.org/10.1016/j.trac.2021.116320

    Article  CAS  Google Scholar 

  3. Zhang X-P, Xu W, Wang J-H, Shu Y (2022) Analyst 147:4008–4013. https://doi.org/10.1039/D2AN01180H

    Article  CAS  PubMed  Google Scholar 

  4. Pourshojaei Y, Abiri A, Eskandari K, Haghighijoo Z, Edraki N, Asadipour A (2019) Sci Rep 9:19855. https://doi.org/10.1038/s41598-019-56463-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu J, Ma R, Ha W, Zhang H-X, Shi Y-P (2023) Talanta 253. https://doi.org/10.1016/j.talanta.2022.124025

  6. Ye M, Lin B, Yu Y, Li H, Wang Y, Zhang L, Cao Y, Guo M (2020) Microchim Acta 187:511. https://doi.org/10.1007/s00604-020-04522-1

    Article  CAS  Google Scholar 

  7. Wang Y, Zhao Q, Xue Y, Wu D, Zhang B, Sun J, Yang X (2023) Sens Actuators B 396:134565. https://doi.org/10.1016/j.snb.2023.134565

    Article  CAS  Google Scholar 

  8. Oe M, Miki K, Masuda A, Nogita K, Ohe K (2022) Chem Commun 58:1510–1513. https://doi.org/10.1039/d1cc05132f

    Article  CAS  Google Scholar 

  9. Ouyang H, Lu Q, Wang W, Song Y, Tu X, Zhu C, Smith JN, Du D, Fu Z, Lin Y (2018) Anal Chem 90:5147–5152. https://doi.org/10.1021/acs.analchem.7b05247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Q, Yang L-P, Li D-H, Zhai J, Jiang W, Xie X (2021) Sens Actuators B 326:128836. https://doi.org/10.1016/j.snb.2020.128836

    Article  CAS  Google Scholar 

  11. Xing L, Ma P, Chen F (2024) Spectrochim Acta Part A 310:123954. https://doi.org/10.1016/j.saa.2024.123954

    Article  CAS  Google Scholar 

  12. Yang M, Zhou H, Zhang Y, Hu Z, Niu N, Yu C (2018) Mikrochim Acta 185:132. https://doi.org/10.1007/s00604-018-2678-9

    Article  CAS  PubMed  Google Scholar 

  13. Han Y, Ye Z, Wang F, Chen T, Wei L, Chen L, Xiao L (2019) Nanoscale 11:14793–14801. https://doi.org/10.1039/C9NR01817D

    Article  CAS  PubMed  Google Scholar 

  14. Xiao SJ, Chu ZJ, Zhao XJ, Zhang ZB, Liu YH (2017) Microchim Acta 184:4853–4860. https://doi.org/10.1007/s00604-017-2519-2

    Article  CAS  Google Scholar 

  15. Halawa MI, Wu F, Zafar MN, Mostafa IM, Abdussalam A, Han S, Xu G (2020) J Mater Chem B 8:3542–3549. https://doi.org/10.1039/C9TB02158B

    Article  CAS  PubMed  Google Scholar 

  16. Fan D, Shang C, Gu W, Wang E, Dong S (2017) ACS Appl Mater Interfaces 9:25870–25877. https://doi.org/10.1021/acsami.7b07369

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Feng J, Huang P, Li S, Wu F-Y (2019) Sens Actuators B 298. https://doi.org/10.1016/j.snb.2019.126891

  18. Niu C, Liu Q, Shang Z, Zhao L, Ouyang J (2015) Nanoscale 7:8457–8465. https://doi.org/10.1039/c5nr00554j

    Article  CAS  PubMed  Google Scholar 

  19. Huang Z-M, Cai Q-Y, Ding D-C, Ge J, Hu Y-L, Yang J, Zhang L, Li Z-H (2017) Sens Actuators B 242:355–361. https://doi.org/10.1016/j.snb.2016.11.066

    Article  CAS  Google Scholar 

  20. Xiao T, Sun J, Zhao J, Wang S, Liu G, Yang X (2018) ACS Appl Mater Interfaces 10:6560–6569. https://doi.org/10.1021/acsami.7b18816

    Article  CAS  PubMed  Google Scholar 

  21. Qu F, Yan H, Li K, You J, Han W (2020) J Mater Sci 55:10022–10034. https://doi.org/10.1007/s10853-020-04754-9

    Article  CAS  Google Scholar 

  22. Zhou Q, Zhou T, Tu Y, Yan J (2023) Chem Pap 77:3671–3678. https://doi.org/10.1007/s11696-023-02729-z

    Article  CAS  Google Scholar 

  23. Luo L, Fei J, Duan X, Qi Y, Li M, Li H, Huang J (2019) Tribol Int 134:145–153. https://doi.org/10.1016/j.triboint.2019.01.044

    Article  CAS  Google Scholar 

  24. Liu Y, Ai K, Lu L (2014) Chem Rev 114:5057–5115. https://doi.org/10.1021/cr400407a

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Wu Y, Liu L, Wang W, Zhang W, Song D, Wang X, Su R (2021) Sens Actuators B 346:130531. https://doi.org/10.1016/j.snb.2021.130531

    Article  CAS  Google Scholar 

  26. Zhang J, Yang H, Pan S, Liu H, Hu X (2021) Spectrochim Acta Part A 244. https://doi.org/10.1016/j.saa.2020.118831

  27. Panraksa Y, Siangproh W, Khampieng T, Chailapakul O, Apilux A (2018) Talanta 178:1017–1023. https://doi.org/10.1016/j.talanta.2017.08.096

    Article  CAS  PubMed  Google Scholar 

  28. Han T, Wang G (2019) J Mater Chem B 7:2613–2618. https://doi.org/10.1039/c8tb02616e

    Article  CAS  PubMed  Google Scholar 

  29. Lv J, He B, Wang N, Li M, Lin Y (2018) RSC Adv 8:32893–32898. https://doi.org/10.1039/c8ra06165c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ni P, Sun Y, Jiang S, Lu W, Wang Y, Li Z, Li Z (2017) Sens Actuators B 240:651–656. https://doi.org/10.1016/j.snb.2016.08.096

    Article  CAS  Google Scholar 

  31. Chang J, Li H, Hou T, Li F (2016) Biosens Bioelectron 86:971–977. https://doi.org/10.1016/j.bios.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  32. Liu R, Wu Z, Yang Y, Liao S, Yu R (2018) Mater Res Express 5:065027. https://doi.org/10.1088/2053-1591/aac867

    Article  CAS  Google Scholar 

  33. Ye M, Lin B, Yu Y, Li H, Wang Y, Zhang L, Cao Y, Guo M (2020) Mikrochim Acta 187:511. https://doi.org/10.1007/s00604-020-04522-1

    Article  CAS  PubMed  Google Scholar 

  34. Wang M, Liu L, Xie X, Zhou X, Lin Z, Su X (2020) Sens Actuators B 313:128023. https://doi.org/10.1016/j.snb.2020.128023

    Article  CAS  Google Scholar 

  35. Wang Y, Xue Y, Zhao Q, Wang S, Sun J, Yang X (2022) Anal Chem 94:16345–16352. https://doi.org/10.1021/acs.analchem.2c03290

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FZ (First Author): Conceptualization, Methodology, Software, Investigation, Formal Analysis, Writing - Original Draft, Writing - Review & Editing; HG (Corresponding Author): Conceptualization, Funding Acquisition, Resources, Supervision, Writing - Review & Editing; WY: Data Curation, Writing - Original Draft; LG: Resources, Supervision; JL: Visualization, Investigation; HC: Software, Validation.

Corresponding author

Correspondence to Hui Guo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Guo, H., Yang, W. et al. Determination of Acetylcholinesterase Activity Based on Ratiometric Fluorescence Signal Sensing. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03703-y

Keywords

Navigation