Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-30T03:04:53.035Z Has data issue: false hasContentIssue false

A comprehensive study on the roles of viscosity and heat conduction in shock waves

Published online by Cambridge University Press:  12 April 2024

Qingbo Zhu
Affiliation:
Hypersonic Propulsion Laboratory, School of Astronautics, Beihang University, Beijing 102206, PR China
You Wu
Affiliation:
Hypersonic Propulsion Laboratory, School of Astronautics, Beihang University, Beijing 102206, PR China
Wenyuan Zhou
Affiliation:
Hypersonic Propulsion Laboratory, School of Astronautics, Beihang University, Beijing 102206, PR China Shanghai Institute of Space Propulsion, Shanghai 201112, PR China
Qingchun Yang*
Affiliation:
Hypersonic Propulsion Laboratory, School of Astronautics, Beihang University, Beijing 102206, PR China
Xu Xu
Affiliation:
Hypersonic Propulsion Laboratory, School of Astronautics, Beihang University, Beijing 102206, PR China
*
 Email address for correspondence: yangqc@buaa.edu.cn

Abstract

Shock waves are of great interest in many fields of science and engineering, but the mechanisms of their formation, maintenance and dissipation are still not well understood. While all transport processes existing in a shock wave contribute to its compression and irreversibility, they are not of equal importance. To figure out the roles of viscosity and heat conduction in shock transition, the existence of smooth shock solutions and the counter-intuitive entropy overshoot phenomenon (the specific entropy is not monotonically increasing and exhibits a peak inside the shock front) are theoretically and numerically investigated, with emphasis on the effects of viscosity and heat conduction. Instead of higher-order hydrodynamics, the Navier–Stokes formalism is employed for its stability and simplicity. Supplemented with nonlinear thermodynamically consistent constitutive relations, the Navier–Stokes equations are adequate to demonstrate the general nature of shock profiles. It is found that heat conduction cannot sustain strong shocks without the presence of viscosity, while viscosity can maintain smooth shock transition at all strengths, regardless of heat conduction. Hence, the critical role in shock compression is played by viscosity rather than heat conduction. Nevertheless, the dispensability of heat conduction would not compromise its essential role in the emergence of an entropy peak. It is the entropy flux resulting from heat conduction that neutralises the positive entropy production and thus prevents the decreasing entropy from violating the second law of thermodynamics. This mechanism of entropy overshoot has not been addressed previously in the literature and is revealed using the entropy balance equation.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, R.K., Yun, K. & Balakrishnan, R. 2001 Beyond Navier–Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids 13 (10), 30613085.CrossRefGoogle Scholar
Al-Ghoul, M. & Eu, B.C. 1997 Generalized hydrodynamics and shock waves. Phys. Rev. E 56 (3), 29812992.CrossRefGoogle Scholar
Al-Ghoul, M. & Eu, B.C. 2001 a Generalized hydrodynamic theory of shock waves: Mach-number dependence of inverse shock width for nitrogen gas. Phys. Rev. Lett. 86 (19), 42944297.CrossRefGoogle ScholarPubMed
Al-Ghoul, M. & Eu, B.C. 2001 b Generalized hydrodynamic theory of shock waves in rigid diatomic gases. Phys. Rev. E 64 (4), 046303.CrossRefGoogle ScholarPubMed
Alekseev, I. & Kustova, E. 2021 Extended continuum models for shock waves in CO2. Phys. Fluids 33 (9), 096101.CrossRefGoogle Scholar
Alsmeyer, H. 1976 Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74 (3), 497513.CrossRefGoogle Scholar
Bae, S. & Lahey, R.T. Jr. 1999 On the use of nonlinear filtering, artificial viscosity, and artificial heat transfer for strong shock computations. J. Comput. Phys. 153 (2), 575595.CrossRefGoogle Scholar
Balakrishnan, R. 1999 Entropy consistent formulation and numerical simulation of the BGK-Burnett equations for hypersonic flows in the continuum-transition regime. Ph.D. thesis, Wichita State University.Google Scholar
Balakrishnan, R. 2004 An approach to entropy consistency in second-order hydrodynamic equations. J. Fluid Mech. 503, 201245.CrossRefGoogle Scholar
Becker, R. 1922 Stoßwelle und Detonation. Z. Phys. 8 (1), 321362.CrossRefGoogle Scholar
Bird, G.A. 1970 Aspects of the structure of strong shock waves. Phys. Fluids 13 (5), 11721177.CrossRefGoogle Scholar
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press.CrossRefGoogle Scholar
Bobylev, A.V., Bisi, M., Cassinari, M.P. & Spiga, G. 2011 Shock wave structure for generalized Burnett equations. Phys. Fluids 23 (3), 030607.CrossRefGoogle Scholar
Bondorf, J., Ivanov, Y.B. & Zimanyi, J. 1981 Structure of a shock front in nuclear matter. Phys. Scr. 24 (3), 514518.CrossRefGoogle Scholar
Boudet, J.F., Amarouchene, Y. & Kellay, H. 2008 Shock front width and structure in supersonic granular flows. Phys. Rev. Lett. 101 (25), 254503.CrossRefGoogle ScholarPubMed
Broadwell, J.E. 1964 Shock structure in a simple discrete velocity gas. Phys. Fluids 7 (8), 12431247.CrossRefGoogle Scholar
Cai, Z. 2021 Moment method as a numerical solver: challenge from shock structure problems. J. Comput. Phys. 444, 110593.CrossRefGoogle Scholar
Cai, Z. & Wang, Y. 2020 Regularized 13-moment equations for inverse power law models. J. Fluid Mech. 894, A12.CrossRefGoogle Scholar
Chamberlain, T.E. 1965 Variation of entropy through a shock wave. AIAA J. 3 (2), 367.CrossRefGoogle Scholar
Chikitkin, A.V., Rogov, B.V., Tirsky, G.A. & Utyuzhnikov, S.V. 2015 Effect of bulk viscosity in supersonic flow past spacecraft. Appl. Numer. Maths 93, 4760.CrossRefGoogle Scholar
Cook, A.W. 2013 Effects of heat conduction on artificial viscosity methods for shock capturing. J. Comput. Phys. 255, 4852.CrossRefGoogle Scholar
Cramer, M.S. & Crickenberger, A.B. 1991 The dissipative structure of shock waves in dense gases. J. Fluid Mech. 223, 325355.CrossRefGoogle Scholar
Danielewicz, P. 1984 Transport properties of excited nuclear matter and the shock-wave profile. Phys. Lett. B 146 (3,4), 168175.CrossRefGoogle Scholar
Domínguez-Vázquez, D. & Fernandez-Feria, R. 2019 On analytical approximations for the structure of a shock wave in a fully ionized plasma. Phys. Plasmas 26 (8), 082118.CrossRefGoogle Scholar
Elizarova, T.G., Khokhlov, A.A. & Montero, S. 2007 Numerical simulation of shock wave structure in nitrogen. Phys. Fluids 19 (6), 068102.CrossRefGoogle Scholar
Fei, F., Hu, Y. & Jenny, P. 2022 A unified stochastic particle method based on the Bhatnagar–Gross–Krook model for polyatomic gases and its combination with DSMC. J. Comput. Phys. 471, 111640.CrossRefGoogle Scholar
Fei, F. & Jenny, P. 2021 A hybrid particle approach based on the unified stochastic particle Bhatnagar–Gross–Krook and DSMC methods. J. Comput. Phys. 424, 109858.CrossRefGoogle Scholar
García-Colín, L.S., Velasco, R.M. & Uribe, F.J. 2008 Beyond the Navier–Stokes equations: Burnett hydrodynamics. Phys. Rep. 465 (4), 149189.CrossRefGoogle Scholar
Gatignol, R. 1975 Kinetic theory for a discrete velocity gas and application to the shock structure. Phys. Fluids 18 (2), 153161.CrossRefGoogle Scholar
Greenshields, C.J. & Reese, J.M. 2007 The structure of shock waves as a test of Brenner's modifications to the Navier–Stokes equations. J. Fluid Mech. 580, 407429.CrossRefGoogle Scholar
de Groot, S.R. & Mazur, P. 1984 Non-Equilibrium Thermodynamics. Dover Publications.Google Scholar
Hayes, W.D. 1958 The basic theory of gasdynamic discontinuities. In Fundamentals of Gas Dynamics (ed. H.W. Emmons). Princeton University Press.CrossRefGoogle Scholar
Hicks, B.L., Yen, S. & Reilly, B.J. 1972 The internal structure of shock waves. J. Fluid Mech. 53 (1), 85111.CrossRefGoogle Scholar
Holian, B.L., Patterson, C.W., Mareschal, M. & Salomons, E. 1993 Modeling shock waves in an ideal gas: going beyond the Navier–Stokes level. Phys. Rev. E 47 (1), R2427.CrossRefGoogle Scholar
Iannelli, J. 2013 An exact non-linear Navier–Stokes compressible-flow solution for CFD code verification. Intl J. Numer. Meth. Fluids 72 (2), 157176.CrossRefGoogle Scholar
Inamuro, T. & Sturtevant, B. 1990 Numerical study of discrete-velocity gases. Phys. Fluids 2 (12), 21962203.CrossRefGoogle Scholar
Jadhav, R.S., Gavasane, A. & Agrawal, A. 2021 Improved theory for shock waves using the OBurnett equations. J. Fluid Mech. 929, A37.CrossRefGoogle Scholar
Jaffrin, M.Y. & Probstein, R.F. 1964 Structure of a plasma shock wave. Phys. Fluids 7 (10), 16581674.CrossRefGoogle Scholar
Jiang, Z., Zhao, W., Chen, W. & Agarwal, R.K. 2019 Computation of shock wave structure using a simpler set of generalized hydrodynamic equations based on nonlinear coupled constitutive relations. Shock Waves 29 (8), 12271239.CrossRefGoogle Scholar
Johnson, B.M. 2013 Analytical shock solutions at large and small Prandtl number. J. Fluid Mech. 726, R4.CrossRefGoogle Scholar
Johnson, B.M. 2014 Closed-form shock solutions. J. Fluid Mech. 745, R1.CrossRefGoogle Scholar
Johnson, J.N. & Chéret, R. 1998 Classic Papers in Shock Compression Science. Springer-Verlag.CrossRefGoogle Scholar
Khidr, M.A. & Mahmoud, M.A.A. 1985 The shock-wave structure for arbitrary Prandtl numbers and high Mach numbers. Astrophys. Space Sci. 113 (2), 289301.CrossRefGoogle Scholar
Kosuge, S., Aoki, K. & Takata, S. 2001 Shock-wave structure for a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard-sphere molecules. Eur. J. Mech. (B/Fluids) 20 (1), 87126.CrossRefGoogle Scholar
Kosuge, S., Kuo, H. & Aoki, K. 2019 A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure. J. Stat. Phys. 177 (2), 209251.CrossRefGoogle Scholar
Kowalczyk, P., Palczewski, A., Russo, G. & Walenta, Z. 2008 Numerical solutions of the Boltzmann equation: comparison of different algorithms. Eur. J. Mech. (B/Fluids) 27 (1), 6274.CrossRefGoogle Scholar
Levinson, A. & Bromberg, O. 2008 Relativistic photon mediated shocks. Phys. Rev. Lett. 100 (13), 131101.CrossRefGoogle ScholarPubMed
Li, J., Tian, B. & Wang, S. 2017 Dissipation matrix and artificial heat conduction for Godunov-type schemes of compressible fluid flows. Intl J. Numer. Meth. Fluids 84 (2), 5775.CrossRefGoogle Scholar
Liepmann, H.W., Narasimha, R. & Chahine, M.T. 1962 Structure of a plane shock layer. Phys. Fluids 5 (11), 13131324.CrossRefGoogle Scholar
Madjarević, D., Ruggeri, T. & Simić, S. 2014 Shock structure and temperature overshoot in macroscopic multi-temperature model of mixtures. Phys. Fluids 26 (10), 106102.CrossRefGoogle Scholar
Malkov, E.A., Bondar, Y.A., Kokhanchik, A.A., Poleshkin, S.O. & Ivanov, M.S. 2015 High-accuracy deterministic solution of the Boltzmann equation for the shock wave structure. Shock Waves 25 (4), 387397.CrossRefGoogle Scholar
Margolin, L.G. 2017 Nonequilibrium entropy in a shock. Entropy 19 (7), 368.CrossRefGoogle Scholar
Margolin, L.G., Reisner, J.M. & Jordan, P.M. 2017 Entropy in self-similar shock profiles. Intl J. Non-Linear Mech. 95, 333346.CrossRefGoogle Scholar
Morduchow, M. & Libby, P.A. 1949 On a complete solution of the one-dimensional flow equations of a viscous, heat-conducting, compressible gas. J. Aeronaut. Sci. 16 (11), 674684.CrossRefGoogle Scholar
Morris, A.B., Varghese, P.L. & Goldstein, D.B. 2011 Monte Carlo solution of the Boltzmann equation via a discrete velocity model. J. Comput. Phys. 230 (4), 12651280.CrossRefGoogle Scholar
Mostafavi, P. & Zank, G.P. 2018 The structure of shocks in the very local interstellar medium. Astrophys. J. Lett. 854 (1), L15.CrossRefGoogle Scholar
Mott-Smith, H.M. 1951 The solution of the Boltzmann equation for a shock wave. Phys. Rev. 82 (6), 885892.CrossRefGoogle Scholar
Muckenfuss, C. 1962 Some aspects of shock structure according to the bimodal model. Phys. Fluids 5 (11), 13251336.CrossRefGoogle Scholar
Myong, R.S. 2014 Analytical solutions of shock structure thickness and asymmetry in Navier–Stokes/Fourier framework. AIAA J. 52 (5), 10751080.CrossRefGoogle Scholar
Noh, W.F. 1987 Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. J. Comput. Phys. 72 (1), 78120.CrossRefGoogle Scholar
Ohwada, T. 1993 Structure of normal shock waves: direct numerical analysis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids 5 (1), 217234.CrossRefGoogle Scholar
Patel, A. & Singh, M. 2019 Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity. Shock Waves 29 (3), 427439.CrossRefGoogle Scholar
Pham-Van-Diep, G.C., Erwin, D.A. & Muntz, E.P. 1989 Nonequilibrium molecular motion in a hypersonic shock wave. Science 245 (4918), 624626.CrossRefGoogle Scholar
Rankine, W.J.M. 1870 On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. R. Soc. Lond. 160, 277288.Google Scholar
Rayleigh, Lord 1910 Aerial plane waves of finite amplitude. Proc. R. Soc. Lond. Ser. A 84 (570), 247284.Google Scholar
Reese, J.M., Woods, L.C., Thivet, F.J.P. & Candel, S.M. 1995 A second-order description of shock structure. J. Comput. Phys. 117 (2), 240250.CrossRefGoogle Scholar
Rendón, P.L. & Crighton, D.G. 2003 Effects of small-amplitude fluctuations on the structure of a shock wave. J. Fluid Mech. 497, 122.CrossRefGoogle Scholar
Rider, W.J. 2000 Revisiting wall heating. J. Comput. Phys. 162 (2), 395410.CrossRefGoogle Scholar
Ruggeri, T. 1996 On the shock structure problem in non-equilibrium thermodynamics of gases. Transp. Theory Stat. Phys. 25 (3-5), 567574.CrossRefGoogle Scholar
Salas, M.D. 2007 The curious events leading to the theory of shock waves. Shock Waves 16 (6), 477487.CrossRefGoogle Scholar
Serrin, J. & Whang, Y.C. 1961 On the entropy change through a shock layer. J. Aerosp. Sci. 28 (12), 990991.CrossRefGoogle Scholar
Shanmugasundaram, V. & Murty, S.S.R. 1980 Structure of shock waves at re-entry speeds. J. Plasma Phys. 23 (1), 4370.CrossRefGoogle Scholar
Shen, C. 2005 Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows. Springer-Verlag.CrossRefGoogle Scholar
Shoev, G.V., Kudryavtsev, A.N., Khotyanovsky, D.V. & Bondar, Y.A. 2023 Viscous effects in Mach reflection of shock waves and passage to the inviscid limit. J. Fluid Mech. 959, A2.CrossRefGoogle Scholar
Shoev, G.V., Timokhin, M.Y. & Bondar, Y.A. 2020 On the total enthalpy behavior inside a shock wave. Phys. Fluids 32 (4), 041703.CrossRefGoogle Scholar
Struchtrup, H. 2005 Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Springer-Verlag.CrossRefGoogle Scholar
Taniguchi, S., Arima, T., Ruggeri, T. & Sugiyama, M. 2014 Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe–Teller theory. Phys. Rev. E 89 (1), 013025.CrossRefGoogle Scholar
Taniguchi, S., Arima, T., Ruggeri, T. & Sugiyama, M. 2016 Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Intl J. Non-Linear Mech. 79, 6675.CrossRefGoogle Scholar
Taylor, G.I. 1910 The conditions necessary for discontinuous motion in gases. Proc. R. Soc. Lond. Ser. A 84 (571), 371377.Google Scholar
Thomas, L.H. 1944 Note on Becker's theory of the shock front. J. Chem. Phys. 12 (11), 449453.CrossRefGoogle Scholar
Timokhin, M.Y., Tikhonov, M., Mursenkova, I.V. & Znamenskaya, I.A. 2020 Shock-wave thickness influence to the light diffraction on a plane shock wave. Phys. Fluids 32 (11), 116103.CrossRefGoogle Scholar
Tonicello, N., Lodato, G. & Vervisch, L. 2020 Entropy preserving low dissipative shock capturing with wave-characteristic based sensor for high-order methods. Comput. Fluids 197, 104357.CrossRefGoogle Scholar
Torrilhon, M. 2016 Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech. 48, 429458.CrossRefGoogle Scholar
Torrilhon, M. & Struchtrup, H. 2004 Regularized 13-moment equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513, 171198.CrossRefGoogle Scholar
Uribe, F.J. & Velasco, R.M. 2018 Shock-wave structure based on the Navier–Stokes–Fourier equations. Phys. Rev. E 97 (4), 043117.CrossRefGoogle ScholarPubMed
Uribe, F.J. & Velasco, R.M. 2019 Exact solutions for shock waves in dilute gases. Phys. Rev. E 100 (2), 023118.CrossRefGoogle ScholarPubMed
Valentini, P. & Schwartzentruber, T.E. 2009 Large-scale molecular dynamics simulations of normal shock waves in dilute argon. Phys. Fluids 21 (6), 066101.CrossRefGoogle Scholar
Xu, K. & Tang, L. 2004 Nonequilibrium Bhatnagar–Gross–Krook model for nitrogen shock structure. Phys. Fluids 16 (10), 38243827.CrossRefGoogle Scholar
Young, J.B. & Guha, A. 1991 Normal shock-wave structure in two-phase vapour-droplet flows. J. Fluid Mech. 228, 243274.Google Scholar
Zel'dovich, Y.B. & Raizer, Y.P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications.Google Scholar
Zhao, W., Chen, W., Liu, H. & Agarwal, R.K. 2014 Computation of 1-D shock structure in a gas in rotational non-equilibrium using a new set of simplified Burnett equations. Vacuum 109, 319325.CrossRefGoogle Scholar