Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T15:10:42.946Z Has data issue: false hasContentIssue false

Data-driven state-space and Koopman operator models of coherent state dynamics on invariant manifolds

Published online by Cambridge University Press:  12 April 2024

C. Ricardo Constante-Amores
Affiliation:
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
Michael D. Graham*
Affiliation:
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
*
Email address for correspondence: mdgraham@wisc.edu

Abstract

The accurate simulation of complex dynamics in fluid flows demands a substantial number of degrees of freedom, i.e. a high-dimensional state space. Nevertheless, the swift attenuation of small-scale perturbations due to viscous diffusion permits in principle the representation of these flows using a significantly reduced dimensionality. Over time, the dynamics of such flows evolves towards a finite-dimensional invariant manifold. Using only data from direct numerical simulations, in the present work we identify the manifold and determine evolution equations for the dynamics on it. We use an advanced autoencoder framework to automatically estimate the intrinsic dimension of the manifold and provide an orthogonal coordinate system. Then, we learn the dynamics by determining an equation on the manifold by using both a function-space approach (approximating the Koopman operator) and a state-space approach (approximating the vector field on the manifold). We apply this method to exact coherent states for Kolmogorov flow and minimal flow unit pipe flow. Fully resolved simulations for these cases require $O(10^3)$ and $O(10^5)$ degrees of freedom, respectively, and we build models with two or three degrees of freedom that faithfully capture the dynamics of these flows. For these examples, both the state-space and function-space time evaluations provide highly accurate predictions of the long-time dynamics in manifold coordinates.

Type
JFM Rapids
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbabi, H. & Mezić, I. 2017 Study of dynamics in post-transient flows using Koopman mode decomposition. Phys. Rev. Fluids 2, 124402.CrossRefGoogle Scholar
Baddoo, P.J., Herrmann, B., McKeon, B.J., Kutz, J.N. & Brunton, S.L. 2023 Physics-informed dynamic mode decomposition. Proc. Math. Phys. Engng Sci. 479 (2271), 20220576.Google Scholar
Brunton, S.L., Proctor, J.L. & Kutz, J.N. 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 (15), 39323937.CrossRefGoogle ScholarPubMed
Budanur, N.B., Borrero-Echeverry, D. & Cvitanović, P. 2015 Periodic orbit analysis of a system with continuous symmetry—a tutorial. Chaos 25 (7), 073112.CrossRefGoogle ScholarPubMed
Budanur, N.B., Short, K.Y., Farazmand, M., Willis, A.P. & Cvitanović, P. 2017 Relative periodic orbits form the backbone of turbulent pipe flow. J. Fluid Mech. 833, 274301.CrossRefGoogle Scholar
Chandler, G.J. & Kerswell, R.R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554595.CrossRefGoogle Scholar
Chen, R.T.Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. 2019 Neural ordinary differential equations. arXiv:1806.07366.Google Scholar
Colbrook, M.J. 2023 The mpEDMD algorithm for data-driven computations of measure-preserving dynamical systems. SIAM J. Numer. Anal. 61 (3), 15851608.CrossRefGoogle Scholar
Colbrook, M.J., Ayton, L.J. & Szöke, M. 2023 Residual dynamic mode decomposition: robust and verified Koopmanism. J. Fluid Mech. 955, A21.CrossRefGoogle Scholar
Constante-Amores, C.R., Linot, A.J. & Graham, M.D. 2024 Enhancing predictive capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches. Chaos (in press) arXiv:2310.06790.Google Scholar
Floryan, D. & Graham, M. 2022 Data-driven discovery of intrinsic dynamics. Nat. Mach. Intell. 4 (12), 11131120.CrossRefGoogle Scholar
Foias, C., Manley, O. & Temam, R. 1988 Modelling of the interaction of small and large eddies in two dimensional turbulent flows. ESAIM: M2AN 22 (1), 93118.CrossRefGoogle Scholar
Graham, M.D. & Floryan, D. 2021 Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows. Annu. Rev. Fluid Mech. 53 (1), 227253.CrossRefGoogle Scholar
Holmes, P., Lumley, J.L., Berkooz, G. & Rowley, C.W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Kaiser, R., Kutz, J.N. & Brunton, S.L. 2021 Data-driven discovery of Koopman eigenfunctions for control. Mach. Learn. Sci. Technol. 2 (3), 035023.CrossRefGoogle Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44 (1), 203225.CrossRefGoogle Scholar
Kingma, D. & Ba, J. 2014 Adam: a method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015, pp. 1–15.Google Scholar
Koopman, B.O. 1931 Hamiltonian systems and transformation in Hilbert space. Proc. Natl Acad. Sci. USA 17 (5), 315318.CrossRefGoogle ScholarPubMed
Lasota, A. & Mackey, M.C. 1994 Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Li, Q., Dietrich, F., Bollt, E.M. & Kevrekidis, I.G. 2017 Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27 (10), 103111.CrossRefGoogle ScholarPubMed
Li, W., Xi, L. & Graham, M. 2006 Nonlinear traveling waves as a framework for understanding turbulent drag reduction. J. Fluid Mech. 565, 353652.CrossRefGoogle Scholar
Linot, A.J., Burby, J.W., Tang, Q., Balaprakash, P., Graham, M.D. & Maulik, R. 2023 a Stabilized neural ordinary differential equations for long-time forecasting of dynamical systems. J. Comput. Phys. 474, 111838.CrossRefGoogle Scholar
Linot, A.J. & Graham, M.D. 2020 Deep learning to discover and predict dynamics on an inertial manifold. Phys. Rev. E 101, 062209.CrossRefGoogle Scholar
Linot, A.J. & Graham, M.D. 2022 Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations. Chaos 32 (7), 073110.CrossRefGoogle ScholarPubMed
Linot, A.J. & Graham, M.D. 2023 Dynamics of a data-driven low-dimensional model of turbulent minimal Couette flow. J. Fluid Mech. 973, A42.CrossRefGoogle Scholar
Linot, A.J., Zeng, K. & Graham, M.D. 2023 b Turbulence control in plane Couette flow using low-dimensional neural ODE-based models and deep reinforcement learning. Intl J. Heat Fluid Flow 101, 109139.CrossRefGoogle Scholar
Lusch, B., Kutz, J.N. & Brunton, S.L. 2018 Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9 (1), 4950.CrossRefGoogle ScholarPubMed
Mezić, I. 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309325.CrossRefGoogle Scholar
Mezic, I. 2020 Koopman operator, geometry, and learning. arXiv:2010.05377.Google Scholar
Mezic, I. 2023 Operator is the model. arXiv:2310.18516.Google Scholar
Milano, M. & Koumoutsakos, P. 2002 Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182 (1), 126.CrossRefGoogle Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
Nakao, H. & Mezic, I. 2020 Spectral analysis of the Koopman operator for partial differential equations. Chaos 30 (11), 113131.CrossRefGoogle ScholarPubMed
Otto, S.E. & Rowley, C.W. 2021 Koopman operators for estimation and control of dynamical systems. Annu. Rev. Control Robot. Auton. Syst. 4 (1), 5987.CrossRefGoogle Scholar
Page, J., Brenner, M.P. & Kerswell, R.R. 2021 Revealing the state space of turbulence using machine learning. Phys. Rev. Fluids 6, 034402.CrossRefGoogle Scholar
Page, J. & Kerswell, R.R. 2020 Searching turbulence for periodic orbits with dynamic mode decomposition. J. Fluid Mech. 886, A28.CrossRefGoogle Scholar
Pérez De Jesús, C.E & Graham, M.D. 2023 Data-driven low-dimensional dynamic model of Kolmogorov flow. Phys. Rev. Fluids 8, 044402.CrossRefGoogle Scholar
Pérez-De-Jesús, C.E., Linot, A.J. & Graham, M.D. 2023 Building symmetries into data-driven manifold dynamics models for complex flows. arXiv:2312.10235.Google Scholar
Rowley, C.W., Mezic, I., Bagheri, S., Schlatter, P. & Henningson, D.S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Temam, R. 1989 Do inertial manifolds apply to turbulence? Physica D 37 (1), 146152.CrossRefGoogle Scholar
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.CrossRefGoogle Scholar
Wedin, H. & Kerswell, R.R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Williams, M., Kevrekidis, I. & Rowley, C. 2014 A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25, 13071346.CrossRefGoogle Scholar
Willis, A.P. 2017 The openpipeflow Navier–Stokes solver. SoftwareX 6, 124127.CrossRefGoogle Scholar
Willis, A.P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514540.CrossRefGoogle Scholar
Zelik, S. 2022 Attractors. then and now. arXiv:2208.12101.Google Scholar
Zeng, K. & Graham, M.D. 2023 Autoencoders for discovering manifold dimension and coordinates in data from complex dynamical systems. arXiv:2305.01090.Google Scholar