Skip to main content
Log in

Effect of boron halogenation on dihydrogen bonds: A quantum mechanical approach

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Dihydrogen bond (DHB) interaction that exists in ammoniated metal borohydride systems is recognized as an effective intermediate step involved in the evolution of H2 molecules. Mechanism of DHB formation and its electronic properties upon halogenations were explored for Mg(BH4)2·2NH3⋯M(BH3X) (where M = Li, Na, K, and X = H, F, Cl, and Br) systems using ab initio (MP2) and DFT (ωB97XD) calculations. The influence of halogens in varying the nature of the DHB that forms in Mg(BH4)2·2NH3⋯M(BH3X) complexes was explored with the Quantum Theory of Atoms In Molecule (QTAIM) analysis. Further, Energy decomposition analysis (EDA) was made to understand the strength of DHB interaction through the calculation of the Edisp term in interaction energy. The results obtained from EDA and QTAIM were found to correlate well with the structural parameter and the interaction energy values. This study reveals the influence of halogenations on tuning the electronic properties of DHB interaction in all the complexes. Our results suggest that the effective substitution of halogens in BH4 molecule enhances DHB interaction, and the impact of halogenations on DHB has been revealed through QTAIM, EDA, Natural Bond Order (NBO), Non-covalent Interaction (NCI), and Bader charge analyses.

Graphical abstract

  • Dihydrogen bonds in ammine metal borohydride systems are responsible for its large hydrogen storage capacity.

  • This study reveals the DHB interaction found in the chosen Mg(BH4)2.2NH3⋯M(BH3X) systems and their property enhancement upon introducing halogens through QTAIM parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Comanescu C 2022 Complex metal borohydrides: From laboratory oddities to prime candidates in energy storage applications Materials 15 2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schneemann A, White J L, Kang S, Jeong S, Wan L F, Cho E S, et al. 2018 Nanostructured metal hydrides for hydrogen storage Chem. Rev. 118 10775

    Article  CAS  PubMed  Google Scholar 

  3. Wang K, Pan Z and Yu X 2019 Metal B-N-H hydrogen-storage compound: Development and perspectives J. Alloys. Compd. 794 303

    Article  CAS  Google Scholar 

  4. Kumar R, Karkamkar A, Bowden M and Autrey T 2019 Solid-state hydrogen rich boron-nitrogen compounds for energy storage Chem. Soc. Rev. 48 5350

    Article  CAS  PubMed  Google Scholar 

  5. Ouyang L, Chen K, Jiang J, Yang X S and Zhu M 2020 Hydrogen storage in light-metal based systems: A review J. Alloys. Compd. 829 154597

    Article  CAS  Google Scholar 

  6. Richardson T B, de Gala S, Crabtree R H M and Siegbahn P E 1995 Unconventional Hydrogen Bonds: Intermolecular B-H-*H-N Interactions C. E. Acta Crystallogr. Soc. 117

  7. Soloveichik G, Her J H, Stephens P W, Gao Y, Rijssenbeek J, Andrus M and Zhao J C 2008 Ammine magnesium borohydride complex as a new material for hydrogen storage: Structure and properties of Mg(BH4)2· 2NH3 Inorg. Chem. 47 4290

  8. Custelcean R and Jackson J E 2001 Dihydrogen bonding: Structures, energetics, and dynamics Chem. Rev. 101 1963

    Article  CAS  PubMed  Google Scholar 

  9. Belkova N V, Epstein L M, Filippov O A and Shubina E S 2016 Hydrogen and dihydrogen bonds in the reactions of metal hydrides Chem. Rev. 116 8545

    Article  CAS  PubMed  Google Scholar 

  10. Makepeace J W, He T, Weidenthaler C, Jensen T R, Chang F, Vegge T, et al. 2019 Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress Int. J. Hydrog. Energy 44 7746

    Article  CAS  Google Scholar 

  11. Chen X, Yuan F, Gu Q, Tan Y, Liu H, Dou S, et al. 2013 Improved dehydrogenation properties of the combined Mg(BH4) 2·6NH3-nNH3BH3 system Int. J. Hydrog. Energy 38 16199

    Article  CAS  Google Scholar 

  12. Yan Y, Grinderslev J B, Lee Y S, Jørgensen M, Cho Y W, Černý R and Jensen T R 2020 Ammonia-assisted fast Li-ion conductivity in a new hemiammine lithium borohydride, LiBH4·1/2NH3 Chem. Commun. 56 3971

    Article  CAS  Google Scholar 

  13. Ulucan T H, Akhade S A, Ambalakatte A, Autrey T, Cairns A, Chen P, Cho Y W, Gallucci F Gao W and Grinderslev J B 2023 Hydrogen storage in liquid hydrogen carriers: recent activities and new trends Prog. Energy 5

  14. Peng B and Chen J 2008 Ammonia borane as an efficient and lightweight hydrogen storage medium Energy Environ Sci. 1 479

    CAS  Google Scholar 

  15. Chen X, Zhao J C and Shore S G 2013 The roles of dihydrogen bonds in amine borane chemistry Acc. Chem. Res. 46 2666

    Article  CAS  PubMed  Google Scholar 

  16. Chu H, Qiu S, Sun L and Xu F 2015 Advanced Materials for Renewable Hydrogen Production, Storage and Utilization Chapter 3 53 (INTECH)

  17. Jepsen L H, Ley M B, Filinchuk Y, Besenbacher F and Jensen T R 2015 Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage ChemSusChem. 8 1452

    Article  CAS  PubMed  Google Scholar 

  18. Zheng X, Wu G, Li W, Xiong Z, He T, Guo J, Chen H and Chen P 2011 Releasing 17.8 wt% H 2 from lithium borohydride ammoniate Energy Environ. Sci. 4 3593

  19. Guo Y, Jiang Y, Xia G and Yu X 2012 Ammine aluminium borohydrides: An appealing system releasing over 12 wt% pure H2 under moderate temperature Chem. Commun. 48 4408

    Article  CAS  Google Scholar 

  20. Grinderslev J B, Amdisen M B and Jensen T R 2020 Synthesis, crystal structures and thermal properties of ammine barium borohydrides Inorganics (Basel). 8 1

  21. Paskevicius M, Jepsen L H, Schouwink P, Černý R, Ravnsbæk D B, Filinchuk Y, et al. 2017 Metal borohydrides and derivatives-synthesis, structure and properties Chem. Soc. Rev. 46 1565

    Article  CAS  PubMed  Google Scholar 

  22. Filippov S, Grinderslev J B, Andersson M S, Armstrong J, Karlsson M, Jensen T R, et al. 2019 Analysis of dihydrogen bonding in ammonium borohydride J. Phys. Chem. C 123 28631

    Article  CAS  Google Scholar 

  23. Milanese C, Jensen T R, Hauback B C, Pistidda C, Dornheim M, Yang H, et al. 2019 Complex hydrides for energy storage Int. J. Hydrog. Energy 44 7860

    Article  CAS  Google Scholar 

  24. Dematteis E M, Amdisen M B, Autrey T, Barale J, Bowden M E, Buckley C E, Cho Y W, Deledda S, Dornheim M, Jongh P D, Grinderslev J B, Gizer G, Gulino V, Hauback B C, Heere M, Heo T W, Humphries T D, Jensen T R, Kang S Y, Lee Y S, Li H W, Li S, Møller K T, Ngene P, Orimo S, Paskevicius M, Polanski M, Takagi S, Wan L, Wood B C, Hirscher M and Baricco M 2022 Hydrogen storage in complex hydrides: Past activities and new trends Prog. Energy 4

  25. Hirscher M, Yartys V A, Baricco M, Bellosta von Colbe J, Blanchard D, Bowman R C, et al. 2020 Materials for hydrogen-based energy storage – past, recent progress and future outlook J. Alloys Compd. 827 153548

    Article  CAS  Google Scholar 

  26. Sun W, Chen X, Gu Q, Wallwork K S, Tan Y, Tang Z and Yu X 2012 A new ammine dual-cation (Li, Mg) borohydride: Synthesis, structure, and dehydrogenation enhancement Chem. Eur. J. 18 6825

    Article  CAS  PubMed  Google Scholar 

  27. Yang Y, Liu Y, Li Y, Gao M and Pan H 2013 Heating rate-dependent dehydrogenation in the thermal decomposition process of Mg(BH4)2·6NH3 J. Phys. Chem. C 117 16326

    Article  CAS  Google Scholar 

  28. Guo Y, Wu H, Zhou W and Yu X 2011 Dehydrogenation tuning of ammine borohydrides using double-metal cations J. Am. Chem. Soc. 133 4690

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Liu Y, Li Y, Gao M and Pan H 2013 Synthesis and thermal decomposition behaviors of magnesium borohydride ammoniates with controllable composition as hydrogen storage materials Chem. Asian J. 8 476

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Liu Y, Wu H, Zhou W, Gao M and Pan H 2014 An ammonia-stabilized mixed-cation borohydride: Synthesis, structure and thermal decomposition behavior Phys. Chem. Chem. Phys. 16 135

    Article  CAS  PubMed  Google Scholar 

  31. Arumugam S, Angamuthu A and Gopalan P 2021 Molecular insights on the dihydrogen bond properties of metal borohydride complexes upon ammoniation ECS J. Solid State Sci. Technol. 10 091006

    Article  CAS  Google Scholar 

  32. Welchman E and Thonhauser T 2017 Decomposition mechanisms in metal borohydrides and their ammoniates J. Mater. Chem. A 5 4084

    Article  CAS  Google Scholar 

  33. Nakamori Y, Miwa K, Ninomiya A, Li H, Ohba N, Towata S I, et al. 2006 Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments Phys. Rev. B 74 1

    Article  Google Scholar 

  34. Arnbjerg L M, Ravnsbæk D B, Filinchuk Y, Vang R T, Cerenius Y, Besenbacher F, et al. 2009 Structure and dynamics for LiBH4 - LiCl solid solutions Chem. Mater. 21 5772

  35. Golub I E, Filippov O A, Gulyaeva E S, Gutsul EI and Belkova N V 2017 The interplay of proton accepting and hydride donor abilities in the mechanism of step-wise boron hydrides alcoholysis Inorg. Chim. Acta 456 113

    Article  CAS  Google Scholar 

  36. Golub I E, Filippov O A, Belkova N V, Epstein L M and Shubina E S 2021 The reaction of hydrogen halides with tetrahydroborate anion and hexahydro-closo-hexaborate dianion Molecules 26

  37. Yang Y, Liu Y, Li Y, Gao M and Pan H 2015 Fluorine-substituted Mg(BH4)2·2NH3 with improved dehydrogenation properties for hydrogen storage J. Mater. Chem. A 3 570

    Article  CAS  Google Scholar 

  38. Sharma M, Sethio D, D’Anna V and Hagemann H 2015 Theoretical study of B 2Hn F (12 - N) 2 -species Int. J. Hydrog. Energy 40 12721

    Article  CAS  Google Scholar 

  39. Head-Gordon M and Head-Gordon T 1994 Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer Chem. Phys. Lett. 220 122

  40. Chai J, Da and Head-Gordon M 2008 Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections Phys. Chem. Chem. Phys. 10 6615

  41. Zhou Y, Yoshida K, Yamaguchi T, Liu H, Fang C and Fang Y 2017 Microhydration of BH4-: Dihydrogen bonds, structure, stability, and Raman spectra J. Phys. Chem. A 121 9146

    Article  CAS  PubMed  Google Scholar 

  42. Chemcraft - Citation [Internet]. [cited 2023 Mar 23]. Available from: https://www.chemcraftprog.com/citation.html

  43. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E Jr, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Kendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford

  44. Jamróz M H 2013 Vibrational energy distribution analysis (VEDA): Scopes and limitations Spectrochim. Acta A 114 220

    Article  Google Scholar 

  45. Lu T and Chen F 2012 Multiwfn: A multifunctional wavefunction analyzer J. Comput. Chem. 33 580

    Article  PubMed  Google Scholar 

  46. Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J and Yang W 2010 Revealing noncovalent interactions J. Am. Chem. Soc. 132 6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reed A E, Curtiss L A and Weinhold F 1988 Intermolecular interactions from a natural bond orbital, donor—Acceptor viewpoint Chem. Rev. 88 899

    Article  CAS  Google Scholar 

  48. Boys S F and Bernardi F 1970 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol. Phys. 19 553

  49. Meot-Ner M 2005 The ionic hydrogen bond Chem. Rev. 105 213

    Article  CAS  PubMed  Google Scholar 

  50. Pegu D, Deb J, Van Alsenoy C and Sarkar U 2017 Theoretical investigation of electronic, vibrational, and nonlinear optical properties of 4-fluoro-4-hydroxybenzophenone Spectro. Lett. 4 232

  51. Darugar V, Vakili M, Tayyari S F and Kamounah F S 2021 Validation of potential energy distribution by VEDA in vibrational assignment some of β-diketones; comparison of theoretical predictions and experimental vibration shifts upon deutration J. Mol Graph Model 1 107

  52. Gunasekaran S, Kumaresan S, Arun Balaji R, Anand G and Seshadri S 2008 Vibrational spectra and normal coordinate analysis on structure of chlorambucil and thioguanine Pram. - J. Phys. 6 1291

    Article  Google Scholar 

  53. Jash P, Meux K and Trenary M 2012 Transmission infrared spectroscopy of ammonia borane J. Undergrad. Res. 5 1

    Article  Google Scholar 

  54. Kumar P S V, Raghavendra V and Subramanian V 2016 Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding J. Chem. Sci. 128 1527

    Article  CAS  Google Scholar 

  55. Espinosa E, Molins E and Lecomte C 1998 Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities Chem. Phys. Lett. 285 170

    Article  CAS  Google Scholar 

  56. Popelier P L A 1998 Characterization of a dihydrogen bond on the basis of the electron density J. Phys. Chem. A 102 1873

    Article  CAS  Google Scholar 

  57. Vijaya Pandiyan B, Deepa P and Kolandaivel P 2015 Do resonance-assisted intramolecular halogen bonds exist without a charge transfer and a σ-hole? Phys. Chem. Chem. Phys. 17 27496

    Article  CAS  PubMed  Google Scholar 

  58. Duraisamy P D, Gopalan P and Angamuthu A 2020 Intermolecular C-H⋯H-M dihydrogen bonds in five-membered heterocyclic complexes: a DFT and ab-initio study Monatsh. Chem. 151 1569

    Article  CAS  Google Scholar 

  59. Golub I E, Filippov O A, Gutsul E I, Belkova N V, Epstein L M, Rossin A, et al. 2012 Dimerization mechanism of bis(triphenylphosphine)copper(I) tetrahydroborate: Proton transfer via a dihydrogen bond Inorg. Chem. 51 6486

    Article  CAS  PubMed  Google Scholar 

  60. Golub I E, Filippov O A, Belkova N V, Epstein L M, Rossin A, Peruzzini M and Shubina E S 2016 Two pathways of proton transfer reaction to (triphos)Cu(η1-BH4): Via a dihydrogen bond [triphos = 1,1,1-tris(diphenyl phosphinomethyl)ethane] Dalton Trans. 45 9127

  61. Paul D, Deb J and Sarkar U 2020 A detailed DFT study on electronic structures and nonlinear optical properties of doped C30 Chem. Select 23 6987

    Google Scholar 

  62. Paul D, Dua H and Sarkar U 2020 Confinement effects of a noble gas dimer inside a fullerene cage: Can it be used as an acceptor in a DSSC? Front. Chem. 6 8

    Google Scholar 

  63. Yan Y, Dononelli W, Jørgensen M, Grinderslev J B, Lee Y S, Cho Y W, et al. 2020 The mechanism of Mg2+ conduction in ammine magnesium borohydride promoted by a neutral molecule Phys. Chem. Chem. Phys. 22 9204

    Article  CAS  PubMed  Google Scholar 

  64. Contreras-García J, Yang W and Johnson E R 2011 Analysis of hydrogen-bond interaction potentials from the electron density: Integration of noncovalent interaction regions J. Phys. Chem. A 115 12983

    Article  PubMed  Google Scholar 

  65. Contreras-garcía J, Johnson E R, Keinan S, Chaudret R, Piquemal P, Beratan D N and Yang W 2012 NCIPLOT: a program for plotting non-covalent interaction regions J. Chem. Theory Comput. 7 625

    Article  Google Scholar 

  66. Sagan F, Filas R and Mitoraj M P 2016 Non-covalent interactions in hydrogen storage materials LiN(CH3)2BH3 and KN(CH3)2BH3 Crystals (Basel) 6 11

  67. Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, et al. 2011 Definition of the hydrogen bond (IUPAC Recommendations 2011) Pure Appl. Chem. 83 1637

    Article  CAS  Google Scholar 

  68. Golub I E, Gulyaeva E S, Filippov O A, Dyadchenko V P, Belkova N V, Epstein L M, et al. 2015 Dihydrogen bond intermediated alcoholysis of dimethylamine-borane in nonaqueous media J. Phys. Chem. A 119 3853

    Article  CAS  PubMed  Google Scholar 

  69. Parida R, Inostroza Rivera R, Sinha S and Giri S 2021 Can superhalogen ligand make more reactive frustrated Lewis Pairs? Chem. Select 6 8068

    CAS  Google Scholar 

  70. Freindorf M, Mccutcheon M, Beiranvand N and Kraka E 2023 Dihydrogen bonding- seen through the eyes of vibrational spectroscopy Molecules 28 263

    Article  CAS  Google Scholar 

  71. Bandyopadhyay P, Karmakar A, Deb J, Sarkar U and Seikh M M 2020 Non-covalent interactions between epinephrine and nitroaromatic compounds: A DFT study Spectrochim. Acta A 5 228

    Google Scholar 

  72. Deb J, Paul D, Sarkar U and Ayers P W 2018 Characterizing the sensitivity of bonds to the curvature of carbon nanotubes J. Mol. Model. 9 24

    Google Scholar 

  73. Pawar R and Subramanian V 2019 Hydrogen bonding interaction of N5H with water: A first principle calculations Comput. Theor. Chem. 1165 1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Saravanapriya Arumugam: Methodology, Formal analysis, Validation, Visualization. Abiram Angamuthu: Methodology, Validation and Visualization. Praveena Gopalan: Supervision, Project administration, Writing – review & editing.

Corresponding author

Correspondence to Praveena Gopalan.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1837 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, S., Angamuthu, A. & Gopalan, P. Effect of boron halogenation on dihydrogen bonds: A quantum mechanical approach. J Chem Sci 136, 28 (2024). https://doi.org/10.1007/s12039-024-02258-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-024-02258-6

Keywords

Navigation