Skip to main content
Log in

Synthesis and Color Durability of Silver Nanoparticles Immobilized on Silica Particles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This paper presents the syntheses of SiO2 particles immobilized with Ag nanoparticles and their composite with Au. Ag nanoparticles are present on the surfaces of the SiO2 particles, and Ag+ ions are galvanically replaced with Au3+ ions. Finally, a method for maintaining the color durability and dispersibility of the Ag nanoparticles is demonstrated. The particles are primarily synthesized in three steps: In the first step, Sn2+ ions are adsorbed on the surfaces of the SiO2 particles; in the second step, Ag+ ions are added, which are reduced and simultaneously adsorbed on the surface while Sn2+ is oxidized to Sn4+; in the third step, Au3+ ions are reduced by galvanic replacement and deposited on the Ag surface. Extensive characterization using transmission electron microscopy, scanning transmission electron microscopy, ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy reveals that the Ag–Au composite nanoparticles (17.2 ± 4.1 nm) are immobilized on the surface of the SiO2 particles (<1 µm). The morphology and coloration of the SiO2 particles with the immobilized Ag–Au composite nanoparticles remain preserved in nitric acid. This preservation is more pronounced than that observed in SiO2 particles with immobilized Ag nanoparticles. This enhanced durability can be attributed to the formation of stable bonds between Ag and Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. L. Liu, E. Koushki, and R. Tayebee (2021). J. Mol. Liq. 330. https://doi.org/10.1016/j.molliq.2021.115542.

    Article  CAS  Google Scholar 

  2. M. Sharifi, B. Khalilzadeh, F. Bayat, I. Isildak, and H. Tajalli (2023). Microchem. J. 190. https://doi.org/10.1016/j.microc.2023.108698.

    Article  CAS  Google Scholar 

  3. A. B. Albeladi, S. A. Al-Thabaiti, and Z. Khan (2020). J. Mol. Liq. 302. https://doi.org/10.1016/j.molliq.2020.112565.

    Article  CAS  Google Scholar 

  4. M. S. Mehata (2021). Mater. Sci. Eng. B 273. https://doi.org/10.1016/j.mseb.2021.115418.

    Article  CAS  Google Scholar 

  5. I. E. Pech-Pech, Y. Verde-Gómez, and A. M. Valenzuela-Muñiz (2021). Colloids Surf. A 615. https://doi.org/10.1016/j.colsurfa.2021.126283.

    Article  CAS  Google Scholar 

  6. L. S. Jhuang, G. Kumar, and F. C. Chen (2021). Dyes Pigm. 188. https://doi.org/10.1016/j.dyepig.2021.109204.

    Article  CAS  Google Scholar 

  7. D. Gardini, M. Dondi, A. L. Costa, F. Matteucci, M. Blosi, C. Galassi, G. Baldi, and E. Cinotti (2008). J. Nanosci. Nanotecnol 8, 1979–1988. https://doi.org/10.1166/jnn.2008.048.

    Article  CAS  Google Scholar 

  8. P. M. T. Cavalcante, M. Dondi, G. Guarini, M. Raimondo, and C. Baldi (2009). Dyes Pigm. 80, 226–232. https://doi.org/10.1016/j.dyepig.2008.07.004.

    Article  CAS  Google Scholar 

  9. S. Mestre, C. Chiva, M. D. Palacios, and J. L. Amorós (2012). J. Eur. Ceram Soc 32, 2825–2830. https://doi.org/10.1016/j.jeurceramsoc.2011.12.006.

    Article  CAS  Google Scholar 

  10. K. Shanmugaraj, T. Sasikumar, C. H. Campos, M. Ilanchelian, R. V. Mangalaraja, and C. C. Torres (2020). Spectrochim Acta A 236. https://doi.org/10.1016/j.saa.2020.118281.

    Article  CAS  Google Scholar 

  11. M. Kobayashi, M. Skarba, P. Galletto, D. Cakara, and M. Borkovec (2005). J. Colloid. Interface Sci. 292, 139–147. https://doi.org/10.1016/j.jcis.2005.05.093.

    Article  CAS  PubMed  Google Scholar 

  12. F. Rancan, Q. Gao, C. Graf, S. Troppens, S. Hadam, S. Hackbarth, C. Kembuan, U. Blume-Peytavi, E. Rühl, J. Lademann, and A. Vogt (2012). ACS Nano. 6, 6829–6842. https://doi.org/10.1021/nn301622h.

    Article  CAS  PubMed  Google Scholar 

  13. E. D. E. R. Hyde, A. Seyfaee, F. Neville, and R. Moreno-Atanasio (2016). Ind. Eng. Chem. Res. 55, 8891–8913. https://doi.org/10.1021/acs.iecr.6b01839.

    Article  CAS  Google Scholar 

  14. T. S. Peretyazhko, Q. Zhang, and V. L. Colvin (2014). Environ. Sci. Technol. 48, 11954–11961. https://doi.org/10.1021/es5023202.

    Article  CAS  PubMed  Google Scholar 

  15. A. Al-Zubeidi, F. Stein, C. Flatebo, C. Rehbock, S. A. H. Jebeli, C. F. Landes, S. Barcikowski, and S. Link (2021). ACS Nano. 15, 8363–8375. https://doi.org/10.1021/acsnano.0c10150.

    Article  CAS  PubMed  Google Scholar 

  16. S. Panicker, I. M. Ahmady, C. Han, M. Chehimi, and A. A. Mohamed (2020). Mater. Today Chem. 16. https://doi.org/10.1016/j.mtchem.2019.100237.

    Article  CAS  Google Scholar 

  17. N. R. Kim, K. Shin, I. Jung, M. Shim, and H. M. Lee (2014). J. Phys. Chem. C 118, 26324–26331. https://doi.org/10.1021/jp506069c.

    Article  CAS  Google Scholar 

  18. D. Chen, J. Li, C. Shi, X. Du, N. Zhao, J. Sheng, and S. Liu (2007). Chem. Mater. 19, 3399–3405. https://doi.org/10.1021/cm070182x.

    Article  CAS  Google Scholar 

  19. X. Lu, H. Y. Tuan, J. Chen, Z. Y. Li, B. A. Korgel, and Y. Xia (2007). J. Am. Chem. Soc. 129, 1733–1742. https://doi.org/10.1021/ja067800f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Knauer, A. Thete, S. Li, H. Romanus, A. Csáki, W. Fritzsche, and J. M. Köhler (2011). Chem. Eng. J. 166, 1164–1169. https://doi.org/10.1016/j.cej.2010.12.028.

    Article  CAS  Google Scholar 

  21. E. Csapó, A. Oszkó, E. Varga, Á. Juhász, N. Buzás, L. Körösi, A. Majzik, and I. Dékány (2012). Colloids Surf. A 415, 281–287. https://doi.org/10.1016/j.colsurfa.2012.09.005.

    Article  CAS  Google Scholar 

  22. J. Cheng, R. Bordes, E. Olsson, and K. Holmberg (2013). Colloids Surf. A 436, 823–829. https://doi.org/10.1016/j.colsurfa.2013.08.023.

    Article  CAS  Google Scholar 

  23. A. Monga and B. Pal (2015). Colloids Surf. A 481, 158–166. https://doi.org/10.1016/j.colsurfa.2015.04.051.

    Article  CAS  Google Scholar 

  24. Z. Yan, Y. Wu, and J. Di (2015). Beilstein J. Nanotechnol. 6, 1362–1368. https://doi.org/10.3762/bjnano.6.140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. R. Daniel, L. A. McCarthy, E. Ringe, and D. Boudreau (2019). RSC Adv. 9, 389–396. https://doi.org/10.1039/C8RA09364D.

    Article  CAS  Google Scholar 

  26. D. Joseph, C. H. Kwak, Y. S. Huh, and Y. K. Han (2019). Sens. Actuat. B 281, 471–477. https://doi.org/10.1016/j.snb.2018.10.092.

    Article  CAS  Google Scholar 

  27. D. Saldivar-Ayala, A. Ashok, O. E. Cigarroa-Mayorga, and Y. M. Hernández-Rodríguez (2023). Colloids Surf. A 677A. https://doi.org/10.1016/j.colsurfa.2023.132359.

    Article  CAS  Google Scholar 

  28. H. Chang, H. Kang, J. K. Yang, A. Jo, H. Y. Lee, Y. S. Lee, and D. H. Jeong (2014). ACS Appl. Mater. Interfaces 6, 11859–11863. https://doi.org/10.1021/am503675x.

    Article  CAS  PubMed  Google Scholar 

  29. R. Vadakkekara, M. Chakraborty, and P. A. Parikh (2014). J. Ind. Eng. Chem. 20, 767–774. https://doi.org/10.1016/j.jiec.2013.06.005.

    Article  CAS  Google Scholar 

  30. S. Shim, X. H. Pham, M. G. Cha, Y. S. Lee, D. H. Jeong, and B. H. Jun (2016). RSC Adv. 6, 48644–48650. https://doi.org/10.1039/C6RA04296A.

    Article  CAS  Google Scholar 

  31. X. H. Pham, M. Lee, S. Shim, S. Jeong, H. M. Kim, E. Hahm, S. H. Lee, Y. S. Lee, D. H. Jeong, and B. H. Jun (2017). RSC Adv. 7, 7015–7021. https://doi.org/10.1039/C6RA26213A.

    Article  CAS  Google Scholar 

  32. X. H. Pham, E. Hahm, K. H. Huynh, H. M. Kim, B. S. Son, D. H. Jeong, and B. H. Jun (2020). J. Ind. Eng. Chem. 83, 208–213. https://doi.org/10.1016/j.jiec.2019.11.030.

    Article  CAS  Google Scholar 

  33. Q. Zhou, H. Chen, and Y. Wang (2010). Electrochim. Acta 55, 2542–2549. https://doi.org/10.1016/j.electacta.2009.12.024.

    Article  CAS  Google Scholar 

  34. J. Hu, W. Li, J. Chen, X. Zhang, and X. Zhao (2008). Surf. Coat Technol. 202, 2922–2926. https://doi.org/10.1016/j.surfcoat.2007.10.026.

    Article  CAS  Google Scholar 

  35. K. Miyoshi, S. Fujikawa, and T. Kunitake (2008). Colloids Surf. A 321, 238–243. https://doi.org/10.1016/j.colsurfa.2007.11.041.

    Article  CAS  Google Scholar 

  36. R. K. Sharma, R. Kaneriya, S. Patel, A. Bindal, and K. C. Pargaien (2013). Microelectron. Eng. 108, 45–49. https://doi.org/10.1016/j.mee.2013.02.061.

    Article  CAS  Google Scholar 

  37. Y. Kobayashi, Y. Tadaki, D. Nagao, and M. Konno (2005). J. Colloid Interface Sci. 283, 601–604. https://doi.org/10.1016/j.jcis.2004.09.002.

    Article  CAS  PubMed  Google Scholar 

  38. W. Stöber, A. Fink, and E. Bohn (1968). J. Colloid Interface Sci. 26, 62–69. https://doi.org/10.1016/0021-9797(68)90272-5.

    Article  Google Scholar 

  39. S. Demoustier-Champagne and M. Delvaux (2001). Mater. Sci. Eng. C 15, 269–271. https://doi.org/10.1016/S0928-4931(01)00217-X.

    Article  Google Scholar 

  40. J. Sun, R. Sun, and H. Du (2012). Appl. Surf. Sci. 258, 4569–4573. https://doi.org/10.1016/j.apsusc.2012.01.029.

    Article  CAS  Google Scholar 

  41. E. K. Pasandideh, B. Kakavandi, S. Nasseri, A. H. Mahvi, R. Nabizadeh, A. Esrafili, and R. R. Kalantary (2016). J. Environ. Health Sci. Eng. 14, 21. https://doi.org/10.1186/s40201-016-0262-y.

    Article  CAS  Google Scholar 

  42. N. Jalili-Jahani, A. Fatehi, J. Azizi-Saadi, and M. Moallem (2022). Ceram. Int. 48, 34415–34427. https://doi.org/10.1016/j.ceramint.2022.08.020.

    Article  CAS  Google Scholar 

  43. G. Dong, Y. Cao, S. Zheng, J. Zhou, W. Li, F. Zaera, and X. Zhou (2020). J. Catal. 391, 155–162. https://doi.org/10.1016/j.jcat.2020.08.018.

    Article  CAS  Google Scholar 

  44. H. Li, M. Wang, Y. Li, F. Mo, L. Zhu, Z. Li, J. Xu, Y. Kong, N. Deng, and R. Chai (2021). Appl. Surf. Sci. 562. https://doi.org/10.1016/j.apsusc.2021.150168.

    Article  CAS  Google Scholar 

  45. W. Wei, D. Yu, Y. Du, Y. Ding, and Q. Huang (2022). Spectrochim Acta A 267. https://doi.org/10.1016/j.saa.2021.120476.

    Article  CAS  Google Scholar 

  46. X. Zhang, Z. Qu, F. Yu, and Y. Wang (2013). J. Catal. 297, 264–271. https://doi.org/10.1016/j.jcat.2012.10.019.

    Article  CAS  Google Scholar 

  47. J. A. Jiménez and M. Sendova (2012). Mater. Chem. Phys. 135, 282–286. https://doi.org/10.1016/j.matchemphys.2012.06.022.

    Article  CAS  Google Scholar 

  48. Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo (2017). J. Cryst. Growth 479, 9–15. https://doi.org/10.1016/j.jcrysgro.2017.09.018.

    Article  CAS  Google Scholar 

  49. P. J. Silva, C. Franco, F. Stellacci, and A. Lapresta-Fernández (2022). Appl. Surf. Sci 580. https://doi.org/10.1016/j.apsusc.2021.152291.

    Article  CAS  Google Scholar 

  50. Q. Li, G. Lin, S. Zhang, H. Wang, J. Borah, Y. Jing, and F. Liu (2022). Polym. Test 115. https://doi.org/10.1016/j.polymertesting.2022.107722.

    Article  CAS  Google Scholar 

  51. Q. Zeng, W. Sun, H. Zhong, and Z. He (2021). Environ. Res. 202. https://doi.org/10.1016/j.envres.2021.111696.

    Article  CAS  PubMed  Google Scholar 

  52. C. Poorshamohammad, L. Liu, X. Cheng, A. A. Momtazi-Borojeni, and J. Chai (2023). Arab. J. Chem. 16. https://doi.org/10.1016/j.arabjc.2022.104386.

    Article  CAS  Google Scholar 

  53. A. F. Ahmed, M. R. Abdulameer, M. M. Kadhim, and F. A. H. Mutlak (2022). Optik 249. https://doi.org/10.1016/j.ijleo.2021.168260.

    Article  CAS  Google Scholar 

  54. M. R. Kim and S. I. Woo (2006). Appl. Catal. A 299, 52–57. https://doi.org/10.1016/j.apcata.2005.10.030.

    Article  CAS  Google Scholar 

  55. I. S. Zhidkov, E. Z. Kurmaev, S. O. Cholakh, E. Fazio, and L. D’Urso (2020). Mendeleev Commun. 30, 285–287. https://doi.org/10.1016/j.mencom.2020.05.007.

    Article  CAS  Google Scholar 

  56. B. K. Sahu, A. Dwivedi, K. K. Pal, R. Pandian, S. Dhara, and A. Das (2021). Appl. Surf. Sci. 537. https://doi.org/10.1016/j.apsusc.2020.147615.

    Article  CAS  Google Scholar 

  57. L. Chen, W. Luo, B. Fang, J. Sun, Y. Chen, X. Feng, and W. Zhang (2022). Mater. Today Commun. 30. https://doi.org/10.1016/j.mtcomm.2022.103173.

    Article  CAS  Google Scholar 

  58. W. X. Rong, C. L. Du, X. Li, M. X. Lei, R. X. Zhang, L. Sun, and D. N. Shi (2022). Phys. Lett. A 443. https://doi.org/10.1016/j.physleta.2022.128217.

    Article  CAS  Google Scholar 

  59. M. Sovizi and M. Aliannezhadi (2022). Optik 252. https://doi.org/10.1016/j.ijleo.2021.168518.

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

K.A. performed the experiments and wrote the manuscript. N.Y. and S.T. supported the experiments. Y.K. planned the experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yoshio Kobayashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araki, K., Yamauchi, N., Tada, S. et al. Synthesis and Color Durability of Silver Nanoparticles Immobilized on Silica Particles. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02592-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02592-2

Keywords

Navigation