Skip to main content

Advertisement

Log in

Multi-objective Optimization in Selective Laser Melting of AlSi10Mg Alloy Based on Response Surface Methodology

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, a method combining full-factorial experiment and response surface methodology was developed to simultaneously optimize the density and tensile strength of SLMed-AlSi10Mg alloy for the first time, taking into account the economic benefits. Meanwhile, the effects of laser power, scanning speed and their interaction on the relative density (ρ) and tensile strength (Rm) were systematically studied. The results show that ρ is not always positively correlated with Rm. Laser power and scanning speed have a strong interaction on ρ and Rm, especially for Rm. The mathematical models of ρ and Rm constructed have high adaptability, reliability and fitting accuracy. The predicted optimal process parameters are laser power of 340 W and scanning speed of 1870 mm/s, and the corresponding experimental values of ρ and Rm are 99.34% and 328.31 MPa, respectively. Our work provides theoretical guidance and technical support for printing AlSi10Mg alloy with high quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends, J. Mater. Sci. Technol., 2019, 35(2), p 270–284.

    Article  CAS  Google Scholar 

  2. J.C. Williams and E.A. Starke, Progress in Structural Materials for Aerospace Systems11 The Golden Jubilee Issue—Selected Topics in Materials Science and Engineering: Past, Present and Future, Acta Mater., 2003, 51(19), p 5775–5799.

    Article  CAS  Google Scholar 

  3. D. Patel and A. Pandey, Powder Bed Fusion of Aluminium Alloys: A Review of Experimental Explorations—Microstructure, Mechanical Properties, and Recent Advances, Mater. Today: Proc., 2023, 82, p 168–177.

    CAS  Google Scholar 

  4. Z. Dong, M. Xu, H. Guo, X. Fei, Y. Liu, B. Gong, and G. Ju, Microstructural Evolution and Characterization of AlSi10Mg Alloy Manufactured by Selective Laser Melting, J. Mater. Res. Technol., 2022, 17, p 2343–2354.

    Article  CAS  Google Scholar 

  5. K. Hareharen, P. Kumar, T. Panneerselvam, D. Babu, and N. Sriraman, Investigating the Effect of Laser Shock Peening on the Wear Behaviour of Selective Laser Melted 316L Stainless Steel, Opt. Laser Technol., 2023, 162, p 10931.

    Google Scholar 

  6. L. Girelli, M. Giovagnoli, M. Tocci, A. Pola, A. Fortini, M. Merlin, and G.M. La Vecchia, Evaluation of the Impact Behaviour of AlSi10Mg Alloy Produced Using Laser Additive Manufacturing, Mater. Sci. Eng. A, 2019, 748, p 38–51.

    Article  CAS  Google Scholar 

  7. D. Svetlizky, B. Zheng, D.M. Steinberg, J.M. Schoenung, E.J. Lavernia, and N. Eliaz, The Influence of Laser Directed Energy Deposition (DED) Processing Parameters for Al5083 Studied by Central Composite Design, J. Mater. Res. Technol., 2022, 17, p 3157–3171.

    Article  CAS  Google Scholar 

  8. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting, Addit. Manuf., 2014, 1–4, p 77–86.

    Google Scholar 

  9. N. Read, W. Wang, K. Essa, and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development, Mater. Des., 2015, 65, p 417–424.

    Article  CAS  Google Scholar 

  10. A.H. Maamoun, Y.F. Xue, M.A. Elbestawi, and S.C. Veldhuis, Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization Density, Surface Roughness, and Dimensional Accuracy, Materials, 2018, 11(12), p 2343.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Y. Liu, C. Liu, W. Liu, Y. Ma, S. Tang, C. Liang, Q. Cai, and C. Zhang, Optimization of Parameters in Laser Powder Deposition AlSi10Mg Alloy Using Taguchi Method, Opt. Laser Technol., 2019, 111, p 470–480.

    Article  CAS  Google Scholar 

  12. M.H. Rahimi, M. Shayganmanesh, R. Noorossana, and F. Pazhuheian, Modelling and Optimization of Laser Engraving Qualitative Characteristics of Al-SiC Composite Using Response Surface Methodology and Artificial Neural Networks, Opt. Laser Technol., 2019, 112, p 65–76.

    Article  CAS  Google Scholar 

  13. S. Gopalakannan and T. Senthilvelan, Application of Response Surface Method on Machining of Al–SiC Nano-Composites, Measurement, 2013, 46(8), p 2705–2715.

    Article  Google Scholar 

  14. A. Khorram, A. Davoodi Jamaloei, M. Paidar, and X. Cao, Laser Cladding of Inconel 718 with 75Cr3C2 + 25(80Ni20Cr) Powder: Statistical Modeling and Optimization, Surf. Coat. Tech., 2019, 378, p 12493.

    Article  Google Scholar 

  15. G. Shi, L. Li, Z. Yu, R. Liu, P. Sha, Z. Xu, Y. Guo, R. Xi, J. Liu, R. Xin, L. Chen, X. Wang, and Z. Zhang, The Interaction Effect of Process Parameters on the Phase Transformation Behavior and Tensile Properties in Additive Manufacturing of Ni-rich NiTi Alloy, J. Manuf. Process., 2022, 77, p 539–550.

    Article  Google Scholar 

  16. K. Miao, H. Zhou, Y. Gao, X. Deng, Z. Lu, and D. Li, Laser Powder-Bed-Fusion of Si3N4 Reinforced AlSi10Mg Composites: Processing, Mechanical Properties and Strengthening Mechanisms, Mater. Sci. Eng. A, 2021, 825, 141874.

    Article  CAS  Google Scholar 

  17. R.M. Radhakrishnan, V. Ramamoorthi, and R. Srinivasan, Experimental Investigation on Powder Processing and its Flow Properties of AlSi10Mg Alloy with Niobium Carbide for Additive Manufacturing, P. I. Mech. Eng. E-J. Pro., 2021, 236(4), p 1421–1429.

    Article  Google Scholar 

  18. E. Louvis, P. Fox, and C.J. Sutcliffe, Selective Laser Melting of Aluminium Components, J. Mater. Process. Tech., 2011, 211(2), p 275–284.

    Article  CAS  Google Scholar 

  19. L. Wu, Z. Zhao, P. Bai, W. Zhao, Y. Li, M. Liang, H. Liao, P. Huo, and J. Li, Wear Resistance of Graphene Nano-Platelets (GNPs) Reinforced AlSi10Mg Matrix Composite Prepared by SLM, Appl. Surf. Sci., 2020, 503, p 144156.

    Article  CAS  Google Scholar 

  20. Z. Feng, H. Tan, Y. Fang, X. Lin, and W. Huang, Selective Laser Melting of TiB2/AlSi10Mg Composite: Processability, Microstructure and Fracture Behavior, J. Mater. Process. Tech., 2022, 299, 117386.

    Article  CAS  Google Scholar 

  21. Y. Geng, M. Zhao, X. Li, K. Huang, X. Peng, B. Zhang, X. Fang, Y. Duan, and B. Lu, Wire-Based Directed Energy Deposition of a Novel High-Performance Titanium Fiber-Reinforced Al5183 Aluminum Alloy, Addit. Manuf., 2023, 65, 103445.

    CAS  Google Scholar 

  22. H. Rao, S. Giet, K. Yang, X. Wu, and C.H.J. Davies, The Influence of Processing Parameters on Aluminium Alloy A357 Manufactured by Selective Laser Melting, Mater. Des., 2016, 109, p 334–346.

    Article  CAS  Google Scholar 

  23. S.R. Ch, A. Raja, P. Nadig, R. Jayaganthan, and N.J. Vasa, Influence of Working Environment and Built Orientation on the Tensile Properties of Selective Laser Melted AlSi10Mg Alloy, Mater. Sci. Eng. A, 2019, 750, p 141–151.

    Article  CAS  Google Scholar 

  24. L. Cui, Z. Peng, Y. Chang, D. He, Q. Cao, X. Guo, and Y. Zeng, Porosity, Microstructure and Mechanical Property of Welded Joints Produced by Different Laser Welding Processes in Selective Laser Melting AlSi10Mg Alloys, Opt. Laser Technol., 2022, 150, 107952.

    Article  CAS  Google Scholar 

  25. D.D.A. Buelvas, L.P. Camargo, I.K.I. Salgado, B.L.S. Vicentin, D.F. Valezi, L.H. Dall’Antonia, C.R.T. Tarley, and E.D. Mauro, Study and Optimization of the Adsorption Process of Methylene Blue Dye in Reusable Polyaniline-Magnetite Composites, Synth. Met., 2023, 292, p 117232.

    Article  CAS  Google Scholar 

  26. M.E. Imanian and F.R. Biglari, Modeling and prediction of surface roughness and dimensional accuracy in SLS 3D printing of PVA/CB composite using the central composite design, J. Manuf. Process., 2022, 75, p 154–169.

    Article  Google Scholar 

  27. Y. Javid, Multi-response optimization in laser cladding process of WC powder on Inconel 718, CIRP J. Manuf. Sci. Tec., 2020, 31, p 406–417.

    Article  Google Scholar 

  28. G. Derringer, S. Rr, Simultaneous Optimization of Several Response Variable, 12, (1980)

  29. H. Wu, Y.J. Ren, J.Y. Ren, L.X. Liang, R.D. Li, Q.H. Fang, A.H. Cai, Q. Shan, Y.T. Tian, and I. Baker, Selective Laser Melted AlSi10Mg Alloy Under Melting Mode Transition: Microstructure Evolution, Nanomechanical Behaviors and Tensile Properties, J. Alloys Compd., 2021, 873(10), p 159823.

    Article  CAS  Google Scholar 

  30. J. Liu and P. Wen, Metal Vaporization and its Influence During Laser Powder Bed Fusion Process, Mater. Des., 2022, 215, 110505.

    Article  CAS  Google Scholar 

  31. H. Xie, J. Zhang, F. Li, G. Yuan, Q. Zhu, Q. Jia, H. Zhang, and S. Zhang, Selective Laser Melting of SiCp/Al Composites: Densification, Microstructure, and Mechanical and Tribological Properties, Ceram. Int., 2021, 47(21), p 30826–30837.

    Article  CAS  Google Scholar 

  32. Y. Huang, T.G. Fleming, S.J. Clark, S. Marussi, K. Fezzaa, J. Thiyagalingam, C.L.A. Leung, and P.D. Lee, Keyhole Fluctuation and Pore Formation Mechanisms During Laser Powder Bed Fusion Additive Manufacturing, Nat. Commun., 2022, 13(1), p 1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Q. Guo, M. Qu, L.I. Escano, S.M.H. Hojjatzadeh, Z. Young, K. Fezzaa, and L. Chen, Revealing Melt Flow Instabilities in Laser Powder Bed Fusion Additive Manufacturing of Aluminum Alloy via In-Situ High-Speed X-ray Imaging, Int. J. Mach. Tool Manuf., 2022, 175, 103861.

    Article  Google Scholar 

  34. J.A. Glerum, A. De Luca, M.L. Schuster, C. Kenel, C. Leinenbach, and D.C. Dunand, Effect of Oxide Dispersoids on Precipitation-Strengthened Al-1.7Zr (wt %) Alloys Produced by Laser Powder-Bed Fusion, Addit. Manuf., 2022, 56, p 102933.

    CAS  Google Scholar 

  35. S. Kou, Welding Metallurgy, second ed., John Wiley & Sons, Inc., 2003

  36. T. Zhou, G. Shi, Q. Wu, Z. Wang, J. Che, and H. Wu, Optimization of Cutting Parameters for Cubic Boron Nitride Tool Wear in Hard Turning AISI M2, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08743-2

    Article  Google Scholar 

  37. C. Guo, S. He, H. Yue, Q. Li, and G. Hao, Prediction Modelling and Process Optimization For Forming Multi-Layer Cladding Structures with Laser Directed Energy Deposition, Opt. Laser Technol., 2021, 134, 106607.

    Article  CAS  Google Scholar 

  38. T. Zhou, Q. Wu, Z. Wang, G. Zhao, S. Li, B. Guo, and H. Wu, Analysis of Machined Surface Topography of AISI M2 in Hard Turning Based on Box-Behnken Design, Proc. Inst. Mech. Eng. Pt. B J. Eng. Manuf., 2023, 238(1–2), p 58–71.

    Google Scholar 

  39. J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, Simultaneous Enhancements of Strength and Toughness in an Al-12Si Alloy Synthesized Using Selective Laser Melting, Acta Mater., 2016, 115, p 285–294.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Professor Yan Shi for his suggestions on the experimental scheme and design, and the writing assistance. This work was supported by International Science and Technology Cooperation Program of Jilin Province (CN) [Grant Numbers 20220402015GH].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Shi, Y. Multi-objective Optimization in Selective Laser Melting of AlSi10Mg Alloy Based on Response Surface Methodology. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09340-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09340-7

Keywords

Navigation