Skip to main content
Log in

Formation of < 100 > vacancy dislocation loops from two-dimensional vacancy platelets in body-centered cubic iron

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The < 100 > vacancy dislocation loop is a unique defect of radiation damage in ferritic steels for advanced nuclear systems, but the mechanism responsible for the loop formation remains a puzzle. Here, we report on the formation of < 100 > vacancy dislocation loop in high energy collision cascades overlapping with pre-existing debris using atomistic simulations. Our computations reveal the existence of a novel defect, atomically thick two-dimensional vacancy platelets, in the intermediate stage of the loop formation. The energy analysis and annealing simulations suggests that the < 100 > vacancy loop can be directly produced from the collapse of the nanoscale vacancy platelets on some habit planes. Particularly, the formation of < 100 > vacancy loop depends sensitively on the thickness of the transient vacancy platelets, where a moderate number of two or three atomic layers is critical to form such loop. This is a new formation mechanism for < 100 > vacancy loops, which is different from all previously proposed mechanisms. In addition, the decrease in temperature and Cr concentration are both unfavorable to the collapse of vacancy platelets and thus suppress the < 100 > vacancy loop formation. This finding represents a significant step for understanding the formation of < 100 > vacancy dislocation loops that may provide a basis to enhance the radiation resistance of ferritic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The data in this study are available on request from the corresponding authors.

References

  1. Bhattacharya A, Zinkle SJ, Henry J et al (2022) Irradiation damage concurrent challenges with RAFM and ODS steels for fusion reactor first-wall/blanket: a review. J Phys Energy 4:034003. https://doi.org/10.1088/2515-7655/ac6f7f

    Article  CAS  Google Scholar 

  2. Klueh RL, Nelson AT (2007) Ferritic/martensitic steels for next-generation reactors. J Nucl Mater 371:37–52. https://doi.org/10.1016/j.jnucmat.2007.05.005

    Article  CAS  Google Scholar 

  3. Odette GR, Alinger MJ, Wirth BD (2008) recent developments in irradiation-resistant steels. Annu Rev Mater Res 38:471–503. https://doi.org/10.1146/annurev.matsci.38.060407.130315

    Article  CAS  Google Scholar 

  4. Zinkle SJ, Busby JT (2009) Structural materials for fission & fusion energy. Mater Today 12:12–19. https://doi.org/10.1016/S1369-7021(09)70294-9

    Article  CAS  Google Scholar 

  5. Masters BC (1965) Dislocation loops in irradiated iron. Philos Mag 11:881–893. https://doi.org/10.1080/14786436508223952

    Article  CAS  Google Scholar 

  6. Schaeublin R, Gelles D, Victoria M (2002) Microstructure of irradiated ferritic/martensitic steels in relation to mechanical properties. J Nucl Mater 307–311:197–202. https://doi.org/10.1016/S0022-3115(02)01034-6

    Article  Google Scholar 

  7. Dethloff C, Gaganidze E, Aktaa J (2018) Review and critical assessment of dislocation loop analyses on EUROFER 97. Nucl Mater Energy 15:23–26. https://doi.org/10.1016/j.nme.2018.05.015

    Article  Google Scholar 

  8. Yuan Q, Chauhan A, Gaganidze E, Aktaa J (2022) Dislocation loop coarsening and shape evolution upon annealing neutron-irradiated RAFM steel. J Nucl Mater 558:153366. https://doi.org/10.1016/j.jnucmat.2021.153366

    Article  CAS  Google Scholar 

  9. Wang X, Monterrosa AM, Zhang F et al (2015) Void swelling in high dose ion-irradiated reduced activation ferritic–martensitic steels. J Nucl Mater 462:119–125. https://doi.org/10.1016/j.jnucmat.2015.03.050

    Article  CAS  Google Scholar 

  10. Was GS, Wharry JP, Frisbie B et al (2011) Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys. J Nucl Mater 411:41–50. https://doi.org/10.1016/j.jnucmat.2011.01.031

    Article  CAS  Google Scholar 

  11. Ding ZN, Zhang CH, Yang YT et al (2022) Hardening and ductility loss of RAFM steel CLF-1 irradiated with high-energy heavy ions. J Nucl Mater 572:154024. https://doi.org/10.1016/j.jnucmat.2022.154024

    Article  CAS  Google Scholar 

  12. Carrington W, Hale KF, McLean D (1960) Arrangement of dislocations in iron. Proc R Soc Lond Ser Math Phys Sci 259:203–227

    CAS  Google Scholar 

  13. Dudarev SL, Bullough R, Derlet PM (2008) Effect of the αγ phase transition on the stability of dislocation loops in bcc iron. Phys Rev Lett 100:135503. https://doi.org/10.1103/PhysRevLett.100.135503

    Article  CAS  PubMed  Google Scholar 

  14. Schäublin R, Décamps B, Prokhodtseva A, Löffler JF (2017) On the origin of primary ½a0<111> and a0<100> loops in irradiated Fe(Cr) alloys. Acta Mater 133:427–439. https://doi.org/10.1016/j.actamat.2017.02.041

    Article  CAS  Google Scholar 

  15. Soneda N, de la Rubia TD (1998) Defect production, annealing kinetics and damage evolution in α-Fe: an atomic-scale computer simulation. Philos Mag A 78:995–1019. https://doi.org/10.1080/01418619808239970

    Article  CAS  Google Scholar 

  16. Marian J, Wirth BD, Perlado JM (2002) Mechanism of formation and growth of <100> interstitial loops in ferritic materials. Phys Rev Lett 88:255507. https://doi.org/10.1103/PhysRevLett.88.255507

    Article  CAS  PubMed  Google Scholar 

  17. Little EA, Bullough R, Wood MH (1980) On the swelling resistance of rerritic steel. Proc R Soc Lond A 372:565–579. https://doi.org/10.1098/rspa.1980.0131

    Article  CAS  Google Scholar 

  18. Xu S, Yao Z, Jenkins ML (2009) TEM characterisation of heavy-ion irradiation damage in FeCr alloys. J Nucl Mater 386–388:161–164. https://doi.org/10.1016/j.jnucmat.2008.12.078

    Article  CAS  Google Scholar 

  19. Yao Z, Jenkins ML, Hernández-Mayoral M, Kirk MA (2010) The temperature dependence of heavy-ion damage in iron: a microstructural transition at elevated temperatures. Philos Mag 90:4623–4634. https://doi.org/10.1080/14786430903430981

    Article  CAS  Google Scholar 

  20. Jenkins ML, Yao Z, Hernández-Mayoral M, Kirk MA (2009) Dynamic observations of heavy-ion damage in Fe and Fe–Cr alloys. J Nucl Mater 389:197–202. https://doi.org/10.1016/j.jnucmat.2009.02.003

    Article  CAS  Google Scholar 

  21. Luo F, Guo L, Chen J et al (2014) Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures. J Nucl Mater 455:339–342. https://doi.org/10.1016/j.jnucmat.2014.07.013

    Article  CAS  Google Scholar 

  22. Eyre BL, Bullough R (1965) On the formation of interstitial loops in b.c.c. metals. Philos Mag 12:31–39. https://doi.org/10.1080/14786436508224943

    Article  CAS  Google Scholar 

  23. Xu H, Stoller RE, Osetsky YN, Terentyev D (2013) Solving the puzzle of ⟨100⟩ interstitial loop formation in bcc Iron. Phys Rev Lett 110:265503. https://doi.org/10.1103/PhysRevLett.110.265503

    Article  CAS  PubMed  Google Scholar 

  24. Chen J, Gao N, Jung P, Sauvage T (2013) A new mechanism of loop formation and transformation in bcc iron without dislocation reaction. J Nucl Mater 441:216–221. https://doi.org/10.1016/j.jnucmat.2013.05.074

    Article  CAS  Google Scholar 

  25. Zhang Y, Bai X-M, Tonks MR, Biner SB (2015) Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron. Scr Mater 98:5–8. https://doi.org/10.1016/j.scriptamat.2014.10.033

    Article  CAS  Google Scholar 

  26. Alexander R, Marinica M-C, Proville L et al (2016) Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium. Phys Rev B 94:024103. https://doi.org/10.1103/PhysRevB.94.024103

    Article  CAS  Google Scholar 

  27. Granberg F, Byggmästar J, Sand AE, Nordlund K (2017) Cascade debris overlap mechanism of <100> dislocation loop formation in Fe and FeCr. EPL Europhys Lett 119:56003. https://doi.org/10.1209/0295-5075/119/56003

    Article  CAS  Google Scholar 

  28. Peng Q, Meng F, Yang Y et al (2018) Shockwave generates < 100 > dislocation loops in bcc iron. Nat Commun 9:4880. https://doi.org/10.1038/s41467-018-07102-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Abe Y, Satoh Y, Hashimoto N (2021) Migration energy of a self-interstitial atom in α -iron estimated by in situ observation of interstitial clusters at low temperatures using high-voltage electron microscopy. Philos Mag 101:1619–1631. https://doi.org/10.1080/14786435.2021.1921873

    Article  CAS  Google Scholar 

  30. Kiritani M, Yoshida N (1974) Free migration of interstitial atoms in metals. J Phys Soc Jpn 36:613. https://doi.org/10.1143/JPSJ.36.613

    Article  CAS  Google Scholar 

  31. Kiritani M (1994) Microstructure evolution during irradiation. J Nucl Mater 216:220–264. https://doi.org/10.1016/0022-3115(94)90014-0

    Article  CAS  Google Scholar 

  32. Hashimoto N, Sakuraya S, Tanimoto J, Ohnuki S (2014) Effect of impurities on vacancy migration energy in Fe-based alloys. J Nucl Mater 445:224–226. https://doi.org/10.1016/j.jnucmat.2013.11.021

    Article  CAS  Google Scholar 

  33. Gilbert MR, Yao Z, Kirk MA et al (2009) Vacancy defects in Fe: Comparison between simulation and experiment. J Nucl Mater 386–388:36–40. https://doi.org/10.1016/j.jnucmat.2008.12.055

    Article  CAS  Google Scholar 

  34. Pan X-D, Lu T, Lyu Y-M et al (2020) Effect of H on the formation of vacancy dislocation loops in α-Fe. J Nucl Mater 542:152500. https://doi.org/10.1016/j.jnucmat.2020.152500

    Article  CAS  Google Scholar 

  35. Haley JC, De Moraes SS, Wady P et al (2020) Microstructural examination of neutron, proton and self-ion irradiation damage in a model Fe9Cr alloy. J Nucl Mater 533:152130. https://doi.org/10.1016/j.jnucmat.2020.152130

    Article  CAS  Google Scholar 

  36. Gao J, Du Y, Ohnuki S, Wan F (2016) Evolution of dislocation loops in annealed iron pre-irradiated with hydrogen ion in high-voltage electron microscope. J Nucl Mater 481:81–87. https://doi.org/10.1016/j.jnucmat.2016.09.008

    Article  CAS  Google Scholar 

  37. Wan F, Zhan Q, Long Y et al (2014) The behavior of vacancy-type dislocation loops under electron irradiation in iron. J Nucl Mater 455:253–257. https://doi.org/10.1016/j.jnucmat.2014.05.048

    Article  CAS  Google Scholar 

  38. Soneda N, Ishino S, de la Rubia TD (2001) Vacancy loop formation by “cascade collapse” in α-Fe: a molecular dynamics study of 50 keV cascades. Philos Mag Lett 81:649–659. https://doi.org/10.1080/09500830110062799

    Article  CAS  Google Scholar 

  39. Granberg F, Byggmästar J, Nordlund K (2019) Cascade overlap with vacancy-type defects in Fe. Eur Phys J B 92:146. https://doi.org/10.1140/epjb/e2019-100240-3

    Article  CAS  Google Scholar 

  40. Yao Z, Hernández-Mayoral M, Jenkins ML, Kirk MA (2008) Heavy-ion irradiations of Fe and Fe–Cr model alloys part 1: damage evolution in thin-foils at lower doses. Philos Mag 88:2851–2880. https://doi.org/10.1080/14786430802380469

    Article  CAS  Google Scholar 

  41. Jenkins ML, English CA, Eyre BL (1976) Heavy-ion damage in alpha Fe. Nature 263:400–401. https://doi.org/10.1038/263400a0

    Article  Google Scholar 

  42. Aliaga MJ, Schäublin R, Löffler JF, Caturla MJ (2015) Surface-induced vacancy loops and damage dispersion in irradiated Fe thin films. Acta Mater 101:22–30. https://doi.org/10.1016/j.actamat.2015.08.063

    Article  CAS  Google Scholar 

  43. Korchuganov AV, Zolnikov KP, Kryzhevich DS, Psakhie SG (2017) Primary ion-irradiation damage of BCC-iron surfaces. Russ Phys J 60:170–174. https://doi.org/10.1007/s11182-017-1056-0

    Article  CAS  Google Scholar 

  44. Gao N, Yao ZW, Lu GH et al (2021) Mechanisms for interstitial dislocation loops to diffuse in BCC iron. Nat Commun 12:225. https://doi.org/10.1038/s41467-020-20574-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Byggmästar J, Granberg F, Sand AE et al (2019) Collision cascades overlapping with self-interstitial defect clusters in Fe and W. J Phys Condens Matter 31:245402. https://doi.org/10.1088/1361-648X/ab0682

    Article  PubMed  Google Scholar 

  46. Chartier A, Marinica M-C (2019) Rearrangement of interstitial defects in alpha-Fe under extreme condition. Acta Mater 180:141–148. https://doi.org/10.1016/j.actamat.2019.09.007

    Article  CAS  Google Scholar 

  47. Byggmästar J, Granberg F (2020) Dynamical stability of radiation-induced C15 clusters in iron. J Nucl Mater 528:151893. https://doi.org/10.1016/j.jnucmat.2019.151893

    Article  CAS  Google Scholar 

  48. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  49. Stukowski A, Sadigh B, Erhart P, Caro A (2009) Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations. Model Simul Mater Sci Eng 17:075005. https://doi.org/10.1088/0965-0393/17/7/075005

    Article  CAS  Google Scholar 

  50. Del Rio E, Sampedro JM, Dogo H et al (2011) Formation energy of vacancies in FeCr alloys: dependence on Cr concentration. J Nucl Mater 408:18–24. https://doi.org/10.1016/j.jnucmat.2010.10.021

    Article  CAS  Google Scholar 

  51. Zhang Y, Xiao Z, Bai X-M (2021) Effect of Cr concentration on ½ <111> to <100> dislocation loop transformation in Fe–Cr alloys. J Nucl Mater 543:152592. https://doi.org/10.1016/j.jnucmat.2020.152592

    Article  CAS  Google Scholar 

  52. Biersack JP, Ziegler JF (1982) Refined universal potentials in atomic collisions. Nucl Instrum Methods Phys Res A 194:93–100. https://doi.org/10.1016/0029-554X(82)90496-7

    Article  CAS  Google Scholar 

  53. Bertoni AI, Deluigi OR, Dos Santos GJ et al (2020) Impulsive generation of 〈100〉 dislocation loops in BCC iron. Model Simul Mater Sci Eng 28:055001. https://doi.org/10.1088/1361-651X/ab81a7

    Article  CAS  Google Scholar 

  54. Olsson PAT (2009) Semi-empirical atomistic study of point defect properties in BCC transition metals. Comput Mater Sci 47:135–145. https://doi.org/10.1016/j.commatsci.2009.06.025

    Article  CAS  Google Scholar 

  55. Malerba L, Marinica MC, Anento N et al (2010) Comparison of empirical interatomic potentials for iron applied to radiation damage studies. J Nucl Mater 406:19–38. https://doi.org/10.1016/j.jnucmat.2010.05.017

    Article  CAS  Google Scholar 

  56. Bonny G, Pasianot RC, Castin N, Malerba L (2009) Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing. Philos Mag 89:3531–3546. https://doi.org/10.1080/14786430903299824

    Article  CAS  Google Scholar 

  57. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  58. Rycroft CH, Grest GS, Landry JW, Bazant MZ (2006) Analysis of granular flow in a pebble-bed nuclear reactor. Phys Rev E 74:021306. https://doi.org/10.1103/PhysRevE.74.021306

    Article  CAS  Google Scholar 

  59. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng 20:085007. https://doi.org/10.1088/0965-0393/20/8/085007

    Article  Google Scholar 

  60. Brimbal D, Meslin E, Henry J et al (2013) He and Cr effects on radiation damage formation in ion-irradiated pure iron and Fe–5.40 wt.% Cr: a transmission electron microscopy study. Acta Mater 61:4757–4764. https://doi.org/10.1016/j.actamat.2013.04.070

    Article  CAS  Google Scholar 

  61. Gigax JG, Aydogan E, Chen T et al (2015) The influence of ion beam rastering on the swelling of self-ion irradiated pure iron at 450 °C. J Nucl Mater 465:343–348. https://doi.org/10.1016/j.jnucmat.2015.05.025

    Article  CAS  Google Scholar 

  62. Bhattacharya A, Meslin E, Henry J et al (2018) Dramatic reduction of void swelling by helium in ion-irradiated high purity α-iron. Mater Res Lett 6:372–377. https://doi.org/10.1080/21663831.2018.1462266

    Article  CAS  Google Scholar 

  63. Ramachandran R, Chakravarty S, Balaji S et al (2019) Study of vacancy defects and their thermal stability in MeV Fe ion irradiated RAFM steel using positron beam Doppler broadening spectroscopy. Philos Mag 99:38–54. https://doi.org/10.1080/14786435.2018.1528016

    Article  CAS  Google Scholar 

  64. Sun H, Béland LK (2022) Statistical distribution of spontaneous recombination radii of Frenkel pairs in FCC and BCC metals. Acta Mater 229:117814. https://doi.org/10.1016/j.actamat.2022.117814

    Article  CAS  Google Scholar 

  65. Zhao S, Osetsky Y, Barashev AV, Zhang Y (2019) Frenkel defect recombination in Ni and Ni-containing concentrated solid-solution alloys. Acta Mater 173:184–194. https://doi.org/10.1016/j.actamat.2019.04.060

    Article  CAS  Google Scholar 

  66. Liu S-M, Beyerlein IJ, Han W-Z (2020) Two-dimensional vacancy platelets as precursors for basal dislocation loops in hexagonal zirconium. Nat Commun 11:5766. https://doi.org/10.1038/s41467-020-19629-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Polyak BT (1969) The conjugate gradient method in extremal problems. USSR Comput Math Math Phys 9:94–112. https://doi.org/10.1016/0041-5553(69)90035-4

    Article  Google Scholar 

  68. Fikar J, Schäublin R, Mason DR, Nguyen-Manh D (2018) Nano-sized prismatic vacancy dislocation loops and vacancy clusters in tungsten. Nucl Mater Energy 16:60–65. https://doi.org/10.1016/j.nme.2018.06.011

    Article  Google Scholar 

  69. Fikar J, Gröger R (2016) Shape of small prismatic dislocation loops in tungsten and iron. Solid State Phenom 258:97–101. https://doi.org/10.4028/www.scientific.net/SSP.258.97

    Article  Google Scholar 

  70. Kapinos VG, Osetskii YuN, Platonov PA (1990) The mechanism of nucleation of vacancy loops with burgers vectors 〈100〉 in BCC metals. J Nucl Mater 173:229–242. https://doi.org/10.1016/0022-3115(90)90259-P

    Article  CAS  Google Scholar 

  71. Prokhodtseva A, Décamps B, Ramar A, Schäublin R (2013) Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys. Acta Mater 61:6958–6971. https://doi.org/10.1016/j.actamat.2013.08.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China under grant Nos. 12272118 and U1830117.

Funding

National Natural Science Foundation of China (12272118, U1830117).

Author information

Authors and Affiliations

Authors

Contributions

YY contributed to investigation, methodology, formal analysis, data curation, and writing original draft. YN contributed to formal analysis and writing review and editing. XL contributed to supervision, conceptualization, funding acquisition, formal analysis, and writing review and editing. LH contributed to supervision, conceptualization, resources, formal analysis, funding acquisition, and writing review and editing.

Corresponding authors

Correspondence to Xuepeng Liu or Linghui He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Scott Beckman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 931 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ni, Y., Liu, X. et al. Formation of < 100 > vacancy dislocation loops from two-dimensional vacancy platelets in body-centered cubic iron. J Mater Sci 59, 6386–6402 (2024). https://doi.org/10.1007/s10853-024-09608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09608-2

Navigation