Skip to main content
Log in

Natural and low-cost sorbents as part of the solution for biogas upgrading: A review

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract  

The availability of pollutants in biogas especially carbon dioxide hinders its application in the enginery parts by minimizing its calorific standards. The presence of CO2 contributes to global warming which is a worry globally. Thus, upgrading technologies is needed for safe utilization on small-scale and wide-range. The commercial technologies mostly discussed in the literature are pressure swing adsorption, membrane separation, physical scrubbing, and water scrubbing. These techniques are costly concerning investment, and operation costs, and are energy-intensive, especially on a small scale. Thus, difficult to apply especially in low-income economies, and necessitates the development of natural, low-cost sorbents for biogas upgrading like biomass, eggshell waste, and clay soil. The current review critically evaluates the potentiality of new approaches using low-cost sorbents for biogas upgrading. The review proposed that activating and additional of pore-forming materials in the adsorbents is necessary to significantly enhance their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from [35]

Fig. 3

Adapted from [17]

Fig. 4
Fig. 5

Adapted from [40]

Similar content being viewed by others

Data availability

Data used to support these findings are available when requested with a reasonable reason.

References

  1. Mulu, E., M’Arimi, M.M., Ramkat, R.C.: A review of recent developments in the application of low-cost natural materials in the purification and upgrade of biogas. Renew. Sustain. Energy Rev. 145, 111081 (2021). https://doi.org/10.1016/j.rser.2021.111081

    Article  CAS  Google Scholar 

  2. Guo, Y., Zhao, C., Chen, X., Li, C.: CO2 capture and sorbent regeneration performances of some wood ash materials. Appl. Energy 137, 26–36 (2015). https://doi.org/10.1016/j.apenergy.2014.09.086

    Article  CAS  Google Scholar 

  3. Yousef, A.M., Eldrainy, Y.A., El-Maghlany, W.M., Attia, A.: Upgrading biogas by a low-temperature CO2 removal technique. Alex. Eng. J. 55(2), 1143–1150 (2016). https://doi.org/10.1016/j.aej.2016.03.026

    Article  Google Scholar 

  4. Scarlat, N., Dallemand, J.-F., Fahl, F.: Biogas: Developments and perspectives in Europe. Renew. Energy 129, 457–472 (2018). https://doi.org/10.1016/j.renene.2018.03.006

    Article  Google Scholar 

  5. Wassie, Y.T., Adaramola, M.S.: Potential environmental impacts of small-scale renewable energy technologies in East Africa: A systematic review of the evidence. Renew. Sustain. Energy Rev. 111, 377–391 (2019). https://doi.org/10.1016/j.rser.2019.05.037

    Article  Google Scholar 

  6. Rasi, S., Veijanen, A., Rintala, J.: Trace compounds of biogas from different biogas production plants. Energy 32(8), 1375–1380 (2007). https://doi.org/10.1016/j.energy.2006.10.018

    Article  CAS  Google Scholar 

  7. Atelge, M.R., Senol, H., Djaafri, M., Hansu, T.A., Krisa, D., Atabani, A., . . . Kalloum, S.: A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes. Sustainability, 13(20), 11515 (2021). https://doi.org/10.3390/su132011515

  8. Petersson, A., Wellinger, A.: Biogas upgrading technologies–developments and innovations. IEA Bioenergy 20, 1–19 (2009). https://www.ieabioenergy.com

  9. Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading, and utilization. Renew. Sustain. Energy Rev. 51, 521–532 (2015). https://doi.org/10.1016/j.rser.2015.06.029

    Article  CAS  Google Scholar 

  10. Ahmad, W., Sethupathi, S., Kanadasan, G., Lau, L.C., Kanthasamy, R.: A review on the removal of hydrogen sulfide from biogas by adsorption using sorbents derived from waste. Rev. Chem. Eng. (2019). https://doi.org/10.1515/revce-2018-0048

    Article  Google Scholar 

  11. Pellegrini, L.A., De Guido, G., Langé, S.: Biogas to liquefied biomethane via cryogenic upgrading technologies. Renew. Energy 124, 75–83 (2018). https://doi.org/10.1016/j.renene.2017.08.007

    Article  CAS  Google Scholar 

  12. Makaruk, A., Miltner, M., Harasek, M.: Membrane biogas upgrading processes for the production of natural gas substitutes. Sep. Purif. Technol. 74(1), 83–92 (2010). https://doi.org/10.1016/j.seppur.2010.05.010

    Article  CAS  Google Scholar 

  13. Läntelä, J., Rasi, S., Lehtinen, J., Rintala, J.: Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling. Appl. Energy 92, 307–314 (2012). https://doi.org/10.1016/j.apenergy.2011.10.011

    Article  CAS  Google Scholar 

  14. Abdeen, F.R., Mel, M., Jami, M.S., Ihsan, S.I., Ismail, A.F.: A review of chemical absorption of carbon dioxide for biogas upgrading. Chin. J. Chem. Eng. 24(6), 693–702 (2016). https://doi.org/10.1016/j.cjche.2016.05.006

    Article  CAS  Google Scholar 

  15. Kougias, P.G., Treu, L., Benavente, D.P., Boe, K., Campanaro, S., Angelidaki, I.: Ex-situ biogas upgrading and enhancement in different reactor systems. Biores. Technol. 225, 429–437 (2017). https://doi.org/10.1016/j.biortech.2016.11.124

    Article  CAS  Google Scholar 

  16. Castellani, B., Filipponi, M., Nicolini, A., Cotana, F., Rossi, F.: Carbon dioxide capture using gas hydrate technology. J. Energy Power Eng. 7(5), 883 (2013)

    CAS  Google Scholar 

  17. Bauer, F., Hulteberg, C., Persson, T., Tamm, D.: Biogas upgrading-review of commercial technologies; Biogasuppgradering-Granskning av kommersiella tekniker. (2013). https://www.osti.gov/etdeweb/biblio/22090519

  18. Chouikhi, N., Cecilia, J.A., Vilarrasa-García, E., Besghaier, S., Chlendi, M., Franco Duro, F. I., . . . Bagane, M.: CO2 adsorption of materials synthesized from clay minerals: A review. Minerals. 9(9), 514 ( 2019). https://doi.org/10.3390/min9090514

  19. Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., Cecinato, A.: Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health, Part A 53(10), 899–906 (2018). https://doi.org/10.1080/10934529.2018.1459076

    Article  CAS  Google Scholar 

  20. Ristovski, Z., Jayaratne, E., Morawska, L., Ayoko, G., Lim, M.: Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel. Sci. Total Environ. 345(1–3), 93–98 (2005). https://doi.org/10.1016/j.scitotenv.2004.10.021

    Article  CAS  PubMed  Google Scholar 

  21. Glaeser, E.L., Kahn, M.E.: The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 67(3), 404–418 (2010). https://doi.org/10.1016/j.jue.2009.11.006

    Article  Google Scholar 

  22. Ferella, F., Puca, A., Taglieri, G., Rossi, L., Gallucci, K.: Separation of carbon dioxide for biogas upgrading to biomethane. J. Clean. Prod. 164, 1205–1218 (2017). https://doi.org/10.1016/j.jclepro.2017.07.037

    Article  CAS  Google Scholar 

  23. Macor, A., Benato, A.: Regulated emissions of biogas engines—On-site experimental measurements and damage assessment on human health. Energies 13(5), 1044 (2020). https://doi.org/10.3390/en13051044

    Article  CAS  Google Scholar 

  24. Zhang, X., Wargocki, P., Lian, Z., Thyregod, C.: Effects of exposure to carbon dioxide and effluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance. Indoor Air 27(1), 47–64 (2017). https://doi.org/10.1111/ina.12284

    Article  CAS  PubMed  Google Scholar 

  25. Srivastava, R.K., Shetti, N.P., Reddy, K.R., Kwon, E.E., Nadagouda, M.N., Aminabhavi, T.M.: Biomass utilization and production of biofuels from carbon-neutral materials. Environ. Pollut. 276, 116731 (2021). https://doi.org/10.1016/j.envpol.2021.116731

    Article  CAS  PubMed  Google Scholar 

  26. Pizzuti, L., Martins, C., Lacava, P.: Laminar burning velocity and flammability limits in biogas: A literature review. Renew. Sustain. Energy Rev. 62, 856–865 (2016). https://doi.org/10.1016/j.rser.2016.05.011

    Article  CAS  Google Scholar 

  27. Razbani, O., Mirzamohammad, N., Assadi, M.: Literature review and road map for using biogas in internal combustion engines. Paper presented at the Int. Conf. on Applied Energy. (2011). https://www.semanticscholar.org/paper/Literature-review-and-road-map-for-using-biogas-in-Razbani-Mirzamohammad/ffe47f2e2d348f239f7b474cc039e4c123741742

  28. Abd, A.A., Othman, M.R., Helwani, Z., Shabbani, H.J.K.: Role of heat dissipation on carbon dioxide capture performance in biomethane upgrading system using pressure swing adsorption. Sep. Purif. Technol. 280, 119959 (2022). https://doi.org/10.1016/j.seppur.2021.119959

    Article  CAS  Google Scholar 

  29. Kim, S., Ko, D., Moon, I.: Dynamic optimization of a dual pressure swing adsorption process for natural gas purification and carbon capture. Ind. Eng. Chem. Res. 55(48), 12444–12451 (2016). https://doi.org/10.1021/acs.iecr.5b04157

    Article  CAS  Google Scholar 

  30. Augelletti, R., Conti, M., Annesini, M.C.: Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J. Clean. Prod. 140, 1390–1398 (2017). https://doi.org/10.1016/j.jclepro.2016.10.013

    Article  CAS  Google Scholar 

  31. Delgado, J.A., Uguina, M.A., Sotelo, J.L., Ruiz, B., Gomez, J.M.: Fixed-bed adsorption of carbon dioxide/methane mixtures on silicalite pellets. Adsorption 12(1), 5–18 (2006). https://doi.org/10.1007/s10450-006-0134-3

    Article  CAS  Google Scholar 

  32. Niesner, J., Jecha, D., Stehlík, P.: Biogas upgrading technologies: state of the art review in the European region. Chem. Eng. Trans. 35(86), 517–522 (2013). https://doi.org/10.3303/CET1335086

    Article  Google Scholar 

  33. Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35(5), 1633–1645 (2011). https://doi.org/10.1016/j.biombioe.2011.02.033

    Article  CAS  Google Scholar 

  34. Siqueira, R.M., Freitas, G.R., Peixoto, H.R., Do Nascimento, J.F., Musse, A.P.S., Torres, A. E., . . . Bastos-Neto, M.: Carbon dioxide capture by pressure swing adsorption. Energy Procedia 114, 2182–2192. (2017) https://doi.org/10.1016/j.egypro.2017.03.1355

  35. Kadam, R., Panwar, N.: Recent advancement in biogas enrichment and its applications. Renew. Sustain. Energy Rev. 73, 892–903 (2017). https://doi.org/10.1016/j.rser.2017.01.167

    Article  CAS  Google Scholar 

  36. Nie, H., Jiang, H., Chong, D., Wu, Q., Xu, C., Zhou, H.: Comparison of water scrubbing and propylene carbonate absorption for biogas upgrading process. Energy Fuels 27(6), 3239–3245 (2013). https://doi.org/10.1021/ef400233w|

    Article  CAS  Google Scholar 

  37. Grande, C.A.: Biogas upgrading by pressure swing adsorption. Biofuel’s Eng. Process Technol. 65–84 (2011). https://www.intechopen.com/chapters/17476

  38. Wylock, C.E., Budzianowski, W.M.: Performance evaluation of biogas upgrading by pressurized water scrubbing via modeling and simulation. Chem. Eng. Sci. 170, 639–652 (2017). https://doi.org/10.1016/j.ces.2017.01.012

    Article  CAS  Google Scholar 

  39. Chen, X.Y., Vinh-Thang, H., Ramirez, A.A., Rodrigue, D., Kaliaguine, S.: Membrane gas separation technologies for biogas upgrading. RSC Adv. 5(31), 24399–24448 (2015). https://doi.org/10.1039/C5RA00666J

    Article  CAS  Google Scholar 

  40. Khan, I.U., Othman, M.H.D., Hashim, H., Matsuura, T., Ismail, A., Rezaei-DashtArzhandi, M., Azelee, I.W.: Biogas as a renewable energy fuel–A review of biogas upgrading, utilization and storage. Energy Convers. Manage. 150, 277–294 (2017). https://doi.org/10.1016/j.enconman.2017.08.035

    Article  CAS  Google Scholar 

  41. Vega, F., Cano, M., Portillo, E., Camino, S., Camino, J.A., Navarrete, B.: Kinetic characterization of solvents for CO2 capture under partial oxy-combustion conditions. Energy procedia 114, 2055–2060 (2017). https://doi.org/10.1016/j.egypro.2017.03.1340

    Article  CAS  Google Scholar 

  42. Yan, S., He, Q., Zhao, S., Zhai, H., Cao, M., Ai, P.: CO2 removal from biogas by using green amino acid salts: Performance evaluation. Fuel Process. Technol. 129, 203–212 (2015). https://doi.org/10.1016/j.fuproc.2014.09.019

    Article  CAS  Google Scholar 

  43. Tippayawong, N., Thanompongchart, P.: Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35(12), 4531–4535 (2010). https://doi.org/10.1016/j.energy.2010.04.014

    Article  CAS  Google Scholar 

  44. Miltner, M., Makaruk, A., Harasek, M.: Review available biogas upgrading technologies and innovations towards advanced solutions. J. Clean. Prod. 161, 1329–1337 (2017). https://doi.org/10.1016/j.jclepro.2017.06.045

    Article  CAS  Google Scholar 

  45. Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., Vilches, L.F., Navarrete, B.: Recent advances in biogas purifying technologies. Int. J. Green Energy 16(5), 401–412 (2019). https://doi.org/10.1080/15435075.2019.1572610

    Article  CAS  Google Scholar 

  46. Persson, M.: Evaluation of upgrading techniques for biogas. Report SGC 142 (2003). https://www.scribd.com/document/547502383/Evaluation-of-Upgrading-Techniques-for-Biogas

  47. Andriani, D., Wresta, A., Atmaja, T.D., Saepudin, A.: A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl. Biochem. Biotechnol. 172(4), 1909–1928 (2014). https://doi.org/10.1007/s12010-013-0652-x

    Article  CAS  PubMed  Google Scholar 

  48. Baena-Moreno, F.M., Gallego, L.M., Vega, F., Navarrete, B.: Cryogenic techniques: an innovative approach for biogas upgrading. In: Emerging technologies and biological systems for biogas upgrading, pp. 159–186. Elsevier (2021). https://doi.org/10.1016/B978-0-12-822808-1.00007-6

  49. Tan, Y., Nookuea, W., Li, H., Thorin, E., Yan, J.: Cryogenic technology for biogas upgrading combined with carbon capture review of systems and property impacts. Energy Procedia 142, 3741–3746 (2017). https://doi.org/10.1016/j.egypro.2017.12.270

    Article  CAS  Google Scholar 

  50. Langè, S., Pellegrini, L.A., Vergani, P.L., Savio, M.: Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO2 content natural gas streams. Ind. Eng. Chem. Res. 54(40), 9770–9782 (2015). https://doi.org/10.1021/acs.iecr.5b02211

    Article  CAS  Google Scholar 

  51. Struk, M., Kushkevych, I., Vítězová, M.: Biogas upgrading methods: recent advancements and emerging technologies. Rev. Environ. Sci. Bio/Technol. 19, 651–671 (2020). https://doi.org/10.1007/s11157-020-09539-9

    Article  CAS  Google Scholar 

  52. Chmielewski, A.G., Urbaniak, A., Wawryniuk, K.: Membrane enrichment of biogas from the two-stage pilot plant using agricultural waste as a substrate. Biomass Bioenerg. 58, 219–228 (2013). https://doi.org/10.1016/j.biombioe.2013.08.010

    Article  CAS  Google Scholar 

  53. Scholz, M., Melin, T., Wessling, M.: Transforming biogas into biomethane using membrane technology. Renew. Sustain. Energy Rev. 17, 199–212 (2013). https://doi.org/10.1016/j.rser.2012.08.009

    Article  CAS  Google Scholar 

  54. Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G., Chmielewski, A.: Application of polyimide membranes for biogas purification and enrichment. J. Hazard. Mater. 144(3), 698–702 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.098

    Article  CAS  PubMed  Google Scholar 

  55. Park, A., Kim, Y. M., Kim, J. F., Lee, P. S., Cho, Y. H., Park, H. S., . . . Park, Y. I., 2017. Biogas upgrading using membrane contactor process: Pressure-cascaded stripping configuration. Separation and Purification Technology, 183, 358–365. https://doi.org/10.1016/j.seppur.2017.03.006

  56. Persson, M., Jönsson, O., Wellinger, A.: Biogas upgrading to vehicle fuel standards and grid injection. Paper presented at the IEA Bioenergy task. (2006). https://task37.ieabioenergy.com/wp-content/uploads/sites/32/2022/02/upgrading_report_final.pdf

  57. Jiang, L.Y., Chung, T.S., Kulprathipanja, S.: An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation. J. Membr. Sci. 276(1–2), 113–125 (2006). https://doi.org/10.1016/j.memsci.2005.09.041

    Article  CAS  Google Scholar 

  58. Kentish, S.E., Scholes, C.A., Stevens, G.W.: Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem. Eng. 1(1), 52–66 (2008)

    Article  Google Scholar 

  59. Starr, K., Gabarrell, X., Villalba, G., Talens, L., Lombardi, L.: Life cycle assessment of biogas upgrading technologies. Waste Manage. 32(5), 991–999 (2012). https://doi.org/10.1016/j.wasman.2011.12.016

    Article  CAS  Google Scholar 

  60. Bao, Z., Yu, L., Ren, Q., Lu, X., Deng, S.: Adsorption of CO2 and CH4 on a magnesium-based metal-organic framework. J. Colloid Interface Sci. 353(2), 549–556 (2011). https://doi.org/10.1016/j.jcis.2010.09.065

    Article  CAS  PubMed  Google Scholar 

  61. Erdem, E., Karapinar, N., Donat, R.: The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 280(2), 309–314 (2004). https://doi.org/10.1016/j.jcis.2004.08.028

    Article  CAS  PubMed  Google Scholar 

  62. Holub, M., Balintova, M., Demcak, S., Hurakova, M.: Characterization of natural zeolite and determination of its adsorption properties. J. Civ. Eng. Environ. Arch 63(3), 113–122 (2016). https://doi.org/10.7862/rb.2016.192

    Article  Google Scholar 

  63. Baek, W., Ha, S., Hong, S., Kim, S., Kim, Y.: Cation exchange of cesium and cation selectivity of natural zeolites: chabazite, stilbite, and heulandite. Microporous Mesoporous Mater. 264, 159–166 (2018). https://doi.org/10.1016/j.micromeso.2018.01.025

    Article  CAS  Google Scholar 

  64. Yang, S.-T., Kim, J., Ahn, W.-S.: CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions. Microporous Mesoporous Mater. 135(1–3), 90–94 (2010). https://doi.org/10.1016/j.micromeso.2010.06.015

    Article  CAS  Google Scholar 

  65. Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., Hausler, R.: Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9(1), 013007 (2008).  https://doi.org/10.1088/1468-6996/9/1/013007

    Article  PubMed  PubMed Central  Google Scholar 

  66. Montalvo, S., Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I.D., La La Rubia, M.A.: Application of natural zeolites in anaerobic digestion processes: A review. Appl. Clay Sci. 58, 125–133 (2012). https://doi.org/10.1016/j.clay.2012.01.013

    Article  CAS  Google Scholar 

  67. Alonso-Vicario, A., Ochoa-Gómez, J.R., Gil-Río, S., Gómez-Jiménez-Aberasturi, O., Ramírez-López, C., Torrecilla-Soria, J., Domínguez, A.: Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous Mesoporous Mater. 134(1–3), 100–107 (2010). https://doi.org/10.1016/j.micromeso.2010.05.014

    Article  CAS  Google Scholar 

  68. Delgado, J.A., Uguina, M.A., Sotelo, J.L., Ruiz, B., Gomez, J.M.: Fixed-bed adsorption of carbon dioxide/methane mixtures on silicalite pellets. Adsorption 12, 5–18 (2006). https://doi.org/10.1007/s10450-006-0134-3

    Article  CAS  Google Scholar 

  69. Bae, T.-H., Hudson, M.R., Mason, J.A., Queen, W. L., Dutton, J.J., Sumida, K., . . . Long, J.R.: Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ. Sci. 6(1), 128–138 (2013). https://doi.org/10.1039/C2EE23337A

  70. Paolini, V., Petracchini, F., Guerriero, E., Bencini, A., Drigo, S.: Biogas cleaning and upgrading with natural zeolites from tuffs. Environ. Technol. 37(11), 1418–1427 (2016). https://doi.org/10.1080/09593330.2015.1118557

    Article  CAS  PubMed  Google Scholar 

  71. Marsh, A., Heath, A., Patureau, P., Evernden, M., Walker, P.: Stabilization of clay mixtures and soils by alkali activation. In: Earthen dwellings and structures, pp. 15–26. Springer (2019). https://link.springer.com/chapter/10.1007/978-981-13-5883-8_2

  72. Vaccari, A.: Clays and catalysis: a promising future. Appl. Clay Sci. 14(4), 161–198 (1999). https://doi.org/10.1016/S0169-1317(98)00058-1

    Article  CAS  Google Scholar 

  73. Cecilia, J., Vilarrasa-García, E., Cavalcante, C., Jr., Azevedo, D., Franco, F., Rodríguez-Castellón, E.: Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture. J. Environ. Chem. Eng. 6(4), 4573–4587 (2018). https://doi.org/10.1016/j.jece.2018.07.001

    Article  CAS  Google Scholar 

  74. Liu, L., Chen, H., Shiko, E., Fan, X., Zhou, Y., Zhang, G., . . . Hu, X.E.: Low-cost DETA impregnation of acid-activated sepiolite for CO2 capture. Chem. Eng. J. 353, 940–948. (2018) https://doi.org/10.1016/j.cej.2018.07.086

  75. Elkhalifah, A.E., Bustam, M.A., Shariff, A., Murugesan, T.: Selective adsorption of CO2 on a regenerable amine-bentonite hybrid adsorbent. Appl. Clay Sci. 107, 213–219 (2015). https://doi.org/10.1016/j.clay.2015.01.030

    Article  CAS  Google Scholar 

  76. Garshasbi, V., Jahangiri, M., Anbia, M.: Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays. Appl. Surf. Sci. 393, 225–233 (2017). https://doi.org/10.1016/j.apsusc.2016.09.161

    Article  CAS  Google Scholar 

  77. Chen, C., Park, D.-W., Ahn, W.-S.: CO2 capture using zeolite 13X prepared from bentonite. Appl. Surf. Sci. 292, 63–67 (2014). https://doi.org/10.1016/j.apsusc.2013.11.064

    Article  CAS  Google Scholar 

  78. Elkhalifah, A.E., Maitra, S., Bustam, M.A., Murugesan, T.: Effects of exchanged ammonium cations on structure characteristics and CO2 adsorption capacities of bentonite clay. Appl. Clay Sci. 83, 391–398 (2013). https://doi.org/10.1016/j.clay.2013.07.016

    Article  CAS  Google Scholar 

  79. Wang, K., Yan, X., Komarneni, S.: CO 2 adsorption by several types of pillared montmorillonite clays. Appl. Petrochem. Res. 8, 173–177 (2018). https://doi.org/10.1007/s13203-018-0206-9

    Article  CAS  Google Scholar 

  80. Ouyang, J., Gu, W., Zhang, Y., Yang, H., Jin, Y., Chen, J., Jiang, J.: CO2 capturing performances of millimeter-scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization. Chem. Eng. J. 341, 432–440 (2018). https://doi.org/10.1016/j.cej.2018.02.040

    Article  CAS  Google Scholar 

  81. Ouyang, J., Zheng, C., Gu, W., Zhang, Y., Yang, H., Suib, S.L.: Textural properties determined CO2 capture of tetraethylenepentamine-loaded SiO2 nanowires from α-sepiolite. Chem. Eng. J. 337, 342–350 (2018). https://doi.org/10.1016/j.cej.2017.12.109

    Article  CAS  Google Scholar 

  82. Zuo, Y., Nedeljković, M., Ye, G.: Pore solution composition of alkali-activated slag/fly ash pastes. Cem. Concr. Res. 115, 230–250 (2019). https://doi.org/10.1016/j.cemconres.2018.10.010

    Article  CAS  Google Scholar 

  83. Alhamed, Y.A., Rather, S.U., El-Shazly, A.H., Zaman, S.F., Daous, M.A., Al-Zahrani, A.A.: Preparation of activated carbon from fly ash and its application for CO2 capture. Korean J. Chem. Eng. 32(4), 723–730 (2015). https://doi.org/10.1007/s11814-014-0273-2

    Article  CAS  Google Scholar 

  84. Siriruang, C., Toochinda, P., Julnipitawong, P., Tangtermsirikul, S.: CO2 capture using fly ash from coal-fired power plants and applications of CO2-captured fly ash as a mineral admixture for concrete. J. Environ. Manage. 170, 70–78 (2016). https://doi.org/10.1016/j.jenvman.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  85. Abatzoglou, N., Boivin, S.: A review of biogas purification processes. Biofuels, Bioprod. Biorefin. 3(1), 42–71 (2009). https://doi.org/10.1002/bbb.117

    Article  CAS  Google Scholar 

  86. Mrosso, R., Machunda, R., Pogrebnaya, T.: Removal of Hydrogen Sulfide from Biogas Using a Red Rock. J. Energy 2020, 2309378 (2020). https://doi.org/10.1155/2020/2309378

    Article  CAS  Google Scholar 

  87. Chen, C., Park, D.-W., Ahn, W.-S.: Surface modification of a low-cost bentonite for post-combustion CO2 capture. Appl. Surf. Sci. 283, 699–704 (2013). https://doi.org/10.1016/j.apsusc.2013.07.005

    Article  CAS  Google Scholar 

  88. Li, H., Zheng, F., Wang, J., Zhou, J., Huang, X., Chen, L., . . . Bashir, S.: Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chem. Eng. J. 390, 124513 (2020) https://doi.org/10.1016/j.cej.2020.124513

  89. Kongnoo, A., Tontisirin, S., Worathanakul, P., Phalakornkule, C.: Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash. Fuel 193, 385–394 (2017). https://doi.org/10.1016/j.fuel.2016.12.087

    Article  CAS  Google Scholar 

  90. Andrade Bessa, R., Sousa Costa, L., Oliveira, C.P., Bohn, F., do Nascimento, R.F., Sasaki, J.M., Loiola, A.R.: Kaolin-based magnetic zeolites A and P as water softeners. Microporous Mesoporous Mater. 245, 64–72 (2017). https://doi.org/10.1016/j.micromeso.2017.03.004

    Article  CAS  Google Scholar 

  91. Wu, D., Zhang, B., Yan, L., Kong, H., Wang, X.: Effect of some additives on the synthesis of zeolite from coal fly ash. Int. J. Miner. Process. 80(2–4), 266–272 (2006). https://doi.org/10.1016/j.minpro.2006.05.005

    Article  CAS  Google Scholar 

  92. Lee, J.-S., Kim, J.-H., Kim, J.-T., Suh, J.-K., Lee, J.-M., Lee, C.-H.: Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data 47(5), 1237–1242 (2002). https://doi.org/10.1021/je020050e

    Article  CAS  Google Scholar 

  93. Bacsik, Z., Cheung, O., Vasiliev, P., Hedin, N.: Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Appl. Energy 162, 613–621 (2016). https://doi.org/10.1016/j.apenergy.2015.10.109

    Article  CAS  Google Scholar 

  94. Juárez, M.F.-D., Mostbauer, P., Knapp, A., Müller, W., Tertsch, S., Bockreis, A., Insam, H.: Biogas purification with biomass ash. Waste Manage. 71, 224–232 (2018). https://doi.org/10.1016/j.wasman.2017.09.043

    Article  CAS  Google Scholar 

  95. Juma, G., Machunda, R.Pogrebnaya, T.: Performance of Sweet Potato’s Leaf-Derived Activated Carbon for Hydrogen Sulphide Removal from Biogas. J. Energy 2020, (2020). https://doi.org/10.1155/2020/9121085

  96. Papurello, D., Santarelli, M., Fiorilli, S.: Physical activation of waste-derived materials for biogas cleaning. Energies 11(9), 2338 (2018). https://doi.org/10.3390/en11092338

    Article  CAS  Google Scholar 

  97. Lombardi, L., Carnevale, E.A., Pecorini, I.: Experimental evaluation of two different types of reactors for CO2 removal from the gaseous stream by bottom ash accelerated carbonation. Waste Manage. 58, 287–298 (2016). https://doi.org/10.1016/j.wasman.2016.09.038

    Article  CAS  Google Scholar 

  98. Andersson, J., Nordberg, A.: Biogas upgrading using ash from combustion of wood fuels: laboratory experiments. Energy Environ. Res. 7(1), 1–7 (2017). https://ideas.repec.org/a/ibn/eerjnl/v7y2017i1p38.html

    Article  Google Scholar 

  99. Wang, P., Guo, Y., Zhao, C., Yan, J., Lu, P.: Biomass-derived wood ash with amine modification for post-combustion CO2 capture. Appl. Energy 201, 34–44 (2017). https://doi.org/10.1016/j.apenergy.2017.05.096

    Article  CAS  Google Scholar 

  100. Ahmed, M.B., Johir, M.A.H., Zhou, J.L., Ngo, H.H., Nghiem, L.D., Richardson, C., . . . Bryant, M.R.: Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption. J. Clean. Prod. 225, 405–413 (2019). https://doi.org/10.1016/j.jclepro.2019.03.342

  101. Sevilla, M., Fuertes, A.B.: Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 4(5), 1765–1771 (2011). https://doi.org/10.1039/C0EE00784F

    Article  CAS  Google Scholar 

  102. Wang, R., Wang, P., Yan, X., Lang, J., Peng, C., Xue, Q.: Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl. Mater. Interfaces. 4(11), 5800–5806 (2012). https://doi.org/10.1021/am302077c

    Article  CAS  PubMed  Google Scholar 

  103. Wei, H., Deng, S., Hu, B., Chen, Z., Wang, B., Huang, J., Yu, G.: Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. Chemsuschem 5(12), 2354–2360 (2012). https://doi.org/10.1002/cssc.201200570

    Article  CAS  PubMed  Google Scholar 

  104. Li, D., Ma, T., Zhang, R., Tian, Y., Qiao, Y.: Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel 139, 68–70 (2015). https://doi.org/10.1016/j.fuel.2014.08.027

    Article  CAS  Google Scholar 

  105. Baláž, M.: Ball milling of eggshell waste as a green and sustainable approach: a review. Adv. Coll. Interface. Sci. 256, 256–275 (2018). https://doi.org/10.1016/j.cis.2018.04.001

    Article  CAS  Google Scholar 

  106. Toro, P., Quijada, R., Yazdani-Pedram, M., Arias, J.L.: Eggshell, a new bio-filler for polypropylene composites. Mater. Lett. 61(22), 4347–4350 (2007). https://doi.org/10.1016/j.matlet.2007.01.102

    Article  CAS  Google Scholar 

  107. Davie, M.G., Cheng, H., Hopkins, G.D., Lebron, C.A., Reinhard, M.: Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater. Environ. Sci. Technol. 42(23), 8908–8915 (2008). https://doi.org/10.1021/es8014919

    Article  CAS  PubMed  Google Scholar 

  108. Mrosso, R., Mecha, A.C., Kiplagat, J.: Carbon dioxide removal using a novel adsorbent derived from calcined eggshell waste for biogas upgrading. S. Afr. J. Chem. Eng. (2023). https://doi.org/10.1016/j.sajce.2023.11.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Mobility for Innovative Renewable Energy Technologies (MIRET) [grant number 614658-1-2018-1-KE-PANAF-MOBAF] for funding the research.

Author information

Authors and Affiliations

Authors

Contributions

Register Mrosso: Validation, Visualization, Formal analysis, Writing – original draft, Writing – review & editing, data curation. Achisa C Mecha: Conceptualization, Visualization, Supervision, review & editing. Joseph Kiplagat: Conceptualization, Visualization, Supervision, review & editing.

Corresponding author

Correspondence to Achisa C. Mecha.

Ethics declarations

Ethical approval

No human or animal subjects were used in this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrosso, R., Mecha, A.C. & Kiplagat, J. Natural and low-cost sorbents as part of the solution for biogas upgrading: A review. Adsorption (2024). https://doi.org/10.1007/s10450-024-00464-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00464-9

Keywords

Navigation