Skip to main content
Log in

Natural hydroxyapatite powder from pig-bone waste (pHAP) for the rapid adsorption of heavy metals (Cu) in aqueous solution

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Copper ions are prevalent in the natural environment and possess toxicity as heavy metal ions. The removal of Cu2+ from aqueous solutions can be achieved through adsorption, which is considered a straightforward method. In this study, we employed a facile approach to synthesize pig-bone hydroxyapatite material (pHAP), and the synthesized materials were subjected to characterization using XRD, SEM, FTIR, and BET techniques. The results showed that pHAP has a pure HAP structure, and the surface of HAP has a certain porosity, which provides good conditions for the adsorption of copper ions. Batch adsorption equilibrium experiments were conducted to investigate the various influencing factors, adsorption kinetics, and isotherms. The findings revealed that the optimal adsorption condition of Cu2+ (50 mg/L) on pHAP was pH 7, 318.15 K, the maximum adsorption capacity was 50.25 mg/g, and the adsorption capacity was superior to some adsorbents of the same type. Moreover, it can retain 74.15% of its reusability after being reused 5 times. The adsorption mechanism primarily involves monolayer adsorption through chemical processes, particularly ion exchange, coprecipitation, and complexation reactions. Therefore, pHAP has industrial application potential in the field of copper ion adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Parmar, M., Thakur, L.S.: Heavy metal Cu, Ni and Zn: toxicity, health hazards and their removal techniques by low cost adsorbents: a short overview. Int. J. Plant Anim. Environ. Sci. 3(3), 143–157 (2013)

    CAS  Google Scholar 

  2. Xia, Y.-D., Sun, Y.-Q., Cheng, Y., et al.: Rational design of dual-ligand Eu-MOF for ratiometric fluorescence sensing Cu2+ ions in human serum to diagnose Wilson’s disease. Anal. Chim. Acta 1204, 339731 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. Liu, M., Zhu, H., Wang, K., et al.: A novel fluorescent chemodosimeter for discriminative detection of Cu2+ in environmental, food, and biological samples. ACS Food Sci. Technol. 3(1), 134–140 (2022)

    Article  Google Scholar 

  4. Zhong, W., Zou, J., Yu, Q., et al.: Ultrasensitive indirect electrochemical sensing of thiabendazole in fruit and water by the anodic stripping voltammetry of Cu2+ with hierarchical Ti3C2Tx-TiO2 for signal amplification. Food Chem. 402, 134379 (2023)

    Article  CAS  PubMed  Google Scholar 

  5. Bijimol, D., Punnoose, M.S., Korah, B.K., et al.: Fluorescent sensor based on thiourea capped Mn doped ZnS quantum dots for the sensing of Cu2+ ions in water. Environ. Nanotechnol. Monit. Manag. 18, 100710 (2022)

    CAS  Google Scholar 

  6. Lin, Y.-W., Peng, S.-Y., Lee, W.-H., et al.: Characterization of Cu2+ adsorption for eco-hydroxyapatite derived from limestone sludge via hydrothermal synthesis. J. Mater. Cycles Waste Manage. 25(2), 1069–1081 (2023)

    Article  CAS  Google Scholar 

  7. Kim, H.Y., Song, J., Park, H.G., et al.: Electrochemical detection of zeptomolar miRNA using an RNA-triggered Cu2+ reduction method. Sens. Actuators, B Chem. 360, 131666 (2022)

    Article  CAS  Google Scholar 

  8. Gao, D.L., Lin, W.W., Lin, Q.J., et al.: Remarkable adsorption capacity of Cu2+-doped ZnAl layered double hydroxides and the calcined materials toward phosphate. J. Environ. Chem. Eng. 11(2), 109472 (2023)

    Article  CAS  Google Scholar 

  9. Xiong, Q., Zhang, F.: Study on the performance of composite adsorption of Cu2+ by Chitosan/β-Cyclodextrin cross-linked zeolite. Sustainability 14(4), 2106 (2022)

    Article  CAS  Google Scholar 

  10. Cao, X., Meng, Z., Song, E., et al.: Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu2+ contaminated water. Chemosphere 299, 134414 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. Sellaoui, L., Dhaouadi, F., Taamalli, S., et al.: Understanding the Cu2+ adsorption mechanism on activated carbon using advanced statistical physics modelling. Environ. Sci. Pollut. Res. 29(36), 54882–54889 (2022)

    Article  CAS  Google Scholar 

  12. Khalif, M., Daneshmehr, S., Arshadi, S., et al.: Adsorption of O2 molecule on the transition metals (TM (II)= Sc2+, Ti2+, V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) porphyrins induced carbon nanocone (TM (II) PCNC). J. Mol. Graph. Model. 119, 108362 (2023)

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, Y., Jiang, B., Wang, Y., et al.: Effect of Cu2+ on the laccase-inducted formation of non-extractable residues of tetrabromobisphenol a in humic acids. Bull. Environ. Contam. Toxicol. 109(6), 1162–1166 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. Bao, Y., Jin, J., Ma, M., et al.: Ion exchange conversion of Na-Birnessite to Mg-Buserite for enhanced and preferential Cu2+ removal via hybrid capacitive deionization. ACS Appl. Mater. Interfaces. 14(41), 46646–46656 (2022)

    Article  CAS  PubMed  Google Scholar 

  15. Arokiasamy, P., Abdullah, M.M.A.B., Abd Rahim, S.Z., et al.: Synthesis methods of hydroxyapatite from natural sources: A review. Ceram. Int. 48(11), 14959–14979 (2022)

    Article  CAS  Google Scholar 

  16. Balasooriya, I.L., Chen, J., KoraleGedara, S.M., et al.: Applications of nano hydroxyapatite as adsorbents: A review. Nanomaterials 12(14), 2324 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DileepKumar, V.G., Sridhar, M.S., Aramwit, P., et al.: A review on the synthesis and properties of hydroxyapatite for biomedical applications. J. Biomater. Sci. Polym. Ed. 33(2), 229–261 (2022)

    Article  CAS  PubMed  Google Scholar 

  18. Amenaghawon, A.N., Anyalewechi, C.L., Darmokoesoemo, H., et al.: Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. J. Environ. Manage. 302, 113989 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. Zheng, Y., Zhang, J.: Experimental study on the adsorption of dissolved heavy metals by nano-hydroxyapatite. Water Sci. Technol. 82(9), 1825–1832 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. Dabiri, S.M.H., Rezaie, A.A., Moghimi, M., et al.: Extraction of hydroxyapatite from fish bones and its application in nickel adsorption. BioNanoScience 8(3), 823–834 (2018). https://doi.org/10.1007/s12668-018-0547-y

    Article  Google Scholar 

  21. Zhou, Y., Chang, D., Chang, J.: Preparation of nano-structured pig bone hydroxyapatite for high-efficiency adsorption of Pb2+ from aqueous solution. Int. J. Appl. Ceram. Technol. 14(6), 1125–1133 (2017). https://doi.org/10.1111/ijac.12749

    Article  CAS  Google Scholar 

  22. Wetlesen, C.U.: Rapid spectrophotometric determination of copper in iron, steel and ferrous alloys. Anal. Chim. Acta. 16, 268–270 (1957)

    Article  CAS  Google Scholar 

  23. Derderian, M.D.: Determination of calcium and magnesium in plant material with EDTA. Anal. Chem. 33(12), 1796–1798 (1961)

    Article  CAS  Google Scholar 

  24. Lagergren, S.K.: About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar. 24, 1–39 (1898)

    Google Scholar 

  25. Ho, Y.-S., McKay, G.: Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70(2), 115–124 (1998)

    Article  CAS  Google Scholar 

  26. Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  27. Ho, Y.S., McKay, G.: The sorption of lead(II) ions on peat. Water Res. 33(2), 578–584 (1999). https://doi.org/10.1016/S0043-1354(98)00207-3

    Article  CAS  Google Scholar 

  28. Pan, Y., Li, Z., Zhang, Z., et al.: Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67. J. Environ. Manage. 169, 167–173 (2016). https://doi.org/10.1016/j.jenvman.2015.12.030

    Article  CAS  PubMed  Google Scholar 

  29. Freundlich, H.: Over the adsorption in solution. J. Phys. Chem. 57(385471), 1100–1107 (1906)

    Google Scholar 

  30. Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916)

  31. Mathias, P.M.: The Gibbs-Helmholtz equation in chemical process technology. Ind. Eng. Chem. Res. 55(4), 1076–1087 (2016)

    Article  CAS  Google Scholar 

  32. Ayodele, O., Olusegun, S.J., Oluwasina, O.O., et al.: Experimental and theoretical studies of the adsorption of Cu and Ni ions from wastewater by hydroxyapatite derived from eggshells. Environ. Nanotechnol. Monit. Manag. 15, 100439 (2021). https://doi.org/10.1016/j.enmm.2021.100439

    Article  CAS  Google Scholar 

  33. Dong, Q., Chen, Z., Zhao, B., et al.: In situ fabrication of niobium pentoxide/graphitic carbon nitride type-II heterojunctions for enhanced photocatalytic hydrogen evolution reaction. J. Colloid Interface Sci. 608, 1951–1959 (2022). https://doi.org/10.1016/j.jcis.2021.10.161

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, G., Jin, Y., Ge, M.: Simple and green method for preparing copper nanoparticles supported on carbonized cotton as a heterogeneous Fenton-like catalyst. Colloids Surf., A 647, 128978 (2022). https://doi.org/10.1016/j.colsurfa.2022.128978

    Article  CAS  Google Scholar 

  35. Zhang, L., Lu, T., He, F., et al.: Physicochemical and cytological properties of poorly crystalline calcium-deficient hydroxyapatite with different Ca/P ratios. Ceram. Int. 48(17), 24765–24776 (2022). https://doi.org/10.1016/j.ceramint.2022.05.126

    Article  CAS  Google Scholar 

  36. Lakrat, M., Jodati, H., Mejdoubi, E.M., et al.: Synthesis and characterization of pure and Mg, Cu, Ag, and Sr doped calcium-deficient hydroxyapatite from brushite as precursor using the dissolution-precipitation method. Powder Technol. 413, 118026 (2023). https://doi.org/10.1016/j.powtec.2022.118026

    Article  CAS  Google Scholar 

  37. Uskoković, V., Odsinada, R., Djordjevic, S., et al.: Dynamic light scattering and zeta potential of colloidal mixtures of amelogenin and hydroxyapatite in calcium and phosphate rich ionic milieus. Arch. Oral Biol. 56(6), 521–532 (2011). https://doi.org/10.1016/j.archoralbio.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  38. Kong, L., Liu, X., Lv, G., et al.: Copper adsorption using hydroxyapatite derived from bovine bone. Adv. Civ. Eng. 2022 (2022)

  39. Yang, W., Cao, M.: Study on the difference in adsorption performance of graphene oxide and carboxylated graphene oxide for Cu(II), Pb(II) respectively and mechanism analysis. Diam. Relat. Mater. 129, 109332 (2022). https://doi.org/10.1016/j.diamond.2022.109332

    Article  CAS  Google Scholar 

  40. Akhyar, H.M., Djuned, F., Mulyati, S., et al.: Effectivity of dolomite adsorbent in purification of Mn and Cu from acid mine drainage. Int. J. S. Sci. Educ. Econ. Agric. Res. Technol. 2(6), 86–96 (2023)

    Google Scholar 

  41. Yulianti, F., Kurniawati, D., Oktavia, B., et al.: Immobilization of langsat shell (lansium domesticum) to absorption of metal ions Cu. In: AIP Publishing. 2673(1), 060009 (2023)

  42. Xinyu, Z., Tao, F., Hongwei, Y., et al.: Preparation of chitosan-like magnetic composite microspheres and their adsorption properties for Cu (II). Mater. Today: Proc. 71, 105–113 (2022). https://doi.org/10.1016/j.matpr.2022.09.616

    Article  CAS  Google Scholar 

  43. Jung, K.-W., Lee, S.Y., Choi, J.-W., et al.: A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chem. Eng. J. 369, 529–541 (2019). https://doi.org/10.1016/j.cej.2019.03.102

    Article  CAS  Google Scholar 

  44. Joshi, P., Manocha, S.: Kinetic and thermodynamic studies of the adsorption of copper ions on hydroxyapatite nanoparticles. Mater. Today: Proc. 4(9), 10455–10459 (2017). https://doi.org/10.1016/j.matpr.2017.06.399

    Article  Google Scholar 

  45. Le, H.R., Chen, K.Y., Wang, C.A.: Effect of pH and temperature on the morphology and phases of co-precipitated hydroxyapatite. J. Sol-Gel. Sci. Technol. 61(3), 592–599 (2012)

    Article  CAS  Google Scholar 

  46. Shao, F., Xu, J., Chen, F., et al.: Insights into olation reaction-driven coagulation and adsorption: A pathway for exploiting the surface properties of biochar. Sci. Total Environ. 854, 158595 (2023). https://doi.org/10.1016/j.scitotenv.2022.158595

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Excellent Discipline Cultivation Project by JHUN (2023XKZ043).

Author information

Authors and Affiliations

Authors

Contributions

Ling Shi: Conceptualization, Writing–original draft, Writing–review & editing. Zhongkui Zhu: Data curation, Formal Analysis, Investigation, Methodology. Nana Wu: Project administration, Resources, Investigation. Yufeng Chang: Project administration, Resources, Investigation. Lin Yue: Investigation, Methodology. Liang An: Investigation, Methodology.

Corresponding author

Correspondence to Ling Shi.

Ethics declarations

Ethics approval

Ethics approval was not required for this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1467 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Zhu, Z., Wu, N. et al. Natural hydroxyapatite powder from pig-bone waste (pHAP) for the rapid adsorption of heavy metals (Cu) in aqueous solution. Adsorption (2024). https://doi.org/10.1007/s10450-024-00471-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00471-w

Keywords

Navigation