Skip to main content
Log in

Adsorption of human immunoglobulin G using fibroin microparticles

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Immunoglobulin G (IgG) is an antibody used in numerous therapeutic indications. For this reason, high-purity IgG is required, which implies the use of selective adsorption chromatographic purification techniques. Although, before using chromatography, it is highly important to study the interaction between IgG and the adsorbent. Due to its characteristics, biopolymeric adsorbents are widely studied. However, there are no studies in the literature that evaluate IgG adsorption onto fibroin, a natural polymer that can be used as an ion exchange adsorbent. Thus, the aim of this work was to evaluate the adsorption of human IgG on fibroin microparticles. The microparticles were prepared from fibroin solution using the atomization method, with an average diameter of 108.5 μm. Three buffers (MOPS, MES and Tris–HCl), with different pH, were used, and for the best conditions, the influence of ionic strength (NaCl from 0 to 1 mol L−1), temperature (4 °C to 37 °C) and rotation (20 rpm to 40 rpm) were studied. The highest adsorption capacity (906.45 mg g−1) was reached with the MOPS buffer at pH 8.0, without NaCl, 25 °C and 30 rpm, which is higher than typical adsorption capacities found in the literature for other adsorbents. The adsorption capacity reduced with increasing temperature from 25 °C to 37 °C and rotation rate from 30 to 40 rpm. The thermodynamic parameters demonstrated that adsorption is spontaneous and endothermic. These results open up new possibilities of application of fibroin microparticles, considering the medium in which they are inserted, and highlights the improvement of IgG chromatographic purification for uses in pharmaceutical field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be provided upon request of corresponding author.

References

  1. Daëron, M.: Structural bases of FcγR functions. Int. Rev. Immunol. (1997). https://doi.org/10.3109/08830189709045701

    Article  PubMed  Google Scholar 

  2. Kempf, C., Stucki, M., Boschetti, N.: Pathogen inactivation and removal procedures used in the production of intravenous immunoglobulins. Biologicals (2007). https://doi.org/10.1016/j.biologicals.2006.01.002

    Article  PubMed  Google Scholar 

  3. Biopharmaceuticals Market—Growth, Trends, Covid-19 Impact, And Forecasts (2021–2026), Business Wire. https://www.businesswire.com/news/home/20210301005774/en/Global-Peptide-Therapeutics-Market-2021-to-2026---Growth-Trends-COVID-19-Impact-and-Forecasts---ResearchAndMarkets.com (2023) Accessed 6 May 2023

  4. Cohn, E.J., Strong, L.E., Hughes, W., Mulford, D.J., Ashworth, J.N., Melin, M.E., Taylor, H.L.: Preparation and properties of serum and plasma proteins. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. J. Am. Chem. Soc. (1946). https://doi.org/10.1021/ja01207a034

    Article  PubMed  Google Scholar 

  5. Nfor, B.K., Ahamed, T., van Dedem, G.W., van der Wielen, L.A., van de Sandt, E.J., Eppink, M.H., Ottens, M.: Design strategies for integrated protein purification processes: challenges, progress and outlook. J. Chem. Technol. Biotechnol. (2008). https://doi.org/10.1002/jctb.1815

    Article  Google Scholar 

  6. Kucharska, M., Grabka, J.: A review of chromatographic methods for determination of synthetic food dyes. Talanta (2010). https://doi.org/10.1016/j.talanta.2009.09.032

    Article  PubMed  Google Scholar 

  7. Mandal, B.B., Kundu, S.C.: Cell proliferation and migration in silk fibroin 3D scaffolds. Biomater. (2009). https://doi.org/10.1016/j.biomaterials.2009.02.006

    Article  Google Scholar 

  8. Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J., Kaplan, D.L.: Silk-based biomaterials. Biomater. (2003). https://doi.org/10.1016/S0142-9612(02)00353-8

    Article  Google Scholar 

  9. Wenk, E., Merkle, H.P., Meinel, L.: Silk fibroin as a vehicle for drug delivery applications. J. Control. Release (2011). https://doi.org/10.1016/j.jconrel.2010.11.007

    Article  PubMed  Google Scholar 

  10. Chen, J., Minoura, N., Tanioka, A.: Transport of pharmaceuticals through silk fibroin membrane. Polym. (1994). https://doi.org/10.1016/0032-3861(94)90317-4

    Article  Google Scholar 

  11. Kapoor, S., Kundu, S.C.: Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater. (2016). https://doi.org/10.1016/j.actbio.2015.11.034

    Article  PubMed  Google Scholar 

  12. Wongpanit, P., Rujiravanit, R.: Combinatorial effects of charge characteristics and hydrophobicity of silk fibroin on the sorption and release of charged dyes. J. Biomater. Sci. Polym. Ed. (2012). https://doi.org/10.1163/092050611X576972

    Article  PubMed  Google Scholar 

  13. Nitayaphat, W., Jintakosol, T.: Adsorption of Ag (I) from aqueous solutions using regenerated silk fibroin adsorbent beads. J. Nat. Fibers. (2022). https://doi.org/10.1080/15440478.2020.1848697

    Article  Google Scholar 

  14. Milonjić, S.K.: A consideration of the correct calculation of thermodynamic parameters of adsorption. J. Serb. Chem. (2007). https://doi.org/10.2298/JSC0712363M

    Article  Google Scholar 

  15. Pinheiro, C.P., Moreira, L.M., Alves, S.S., Cadaval, T.R., Jr., Pinto, L.A.: Anthocyanins concentration by adsorption onto chitosan and alginate beads: isotherms, kinetics and thermodynamics parameters. Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2020.10.250

    Article  PubMed  Google Scholar 

  16. El-Khaiary, M.I., Malash, G.F.: Common data analysis errors in batch adsorption studies. Hydrometallurgy (2011). https://doi.org/10.1016/j.hydromet.2010.11.005

    Article  Google Scholar 

  17. Perrechil, F.A., Vilela, J.A., Guerreiro, L.M., Cunha, R.L.: Development of Na-CN—κ-carrageenan microbeads for the encapsulation of lipophilic compounds. Food Biophys. (2012). https://doi.org/10.1007/s11483-012-9265-0

    Article  Google Scholar 

  18. Dyakonov, T., Yang, C.H., Bush, D., Gosangari, S., Majuru, S., Fatmi, A.: Design and characterization of a silk-fibroin-based drug delivery platform using naproxen as a model drug. J. Drug Deliv. (2012). https://doi.org/10.1155/2012/490514

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lammel, A.S., Hu, X., Park, S.H., Kaplan, D.L., Scheibel, T.R.: Controlling silk fibroin particle features for drug delivery. Biomater. (2010). https://doi.org/10.1016/j.biomaterials.2010.02.024

    Article  Google Scholar 

  20. Barth, A., Zscherp, C.: What vibrations tell about proteins. Q. Rev. Biophys. (2002). https://doi.org/10.1017/S0033583502003815

    Article  PubMed  Google Scholar 

  21. Nogueira, G.M., de Moraes, M.A., Rodas, A.C.D., Higa, O.Z., Beppu, M.M.: Hydrogels from silk fibroin metastable solution: formation and characterization from a biomaterial perspective. Mater. Sci. Eng. (2011). https://doi.org/10.1016/j.msec.2011.02.019

    Article  Google Scholar 

  22. Nogueira, G.M., Rodas, A.C., Leite, C.A., Giles, C., Higa, O.Z., Polakiewicz, B., Beppu, M.M.: Preparation and characterization of ethanol-treated silk fibroin dense membranes for biomaterials application using waste silk fibers as raw material. Bioresour. Technol. (2010). https://doi.org/10.1016/j.biortech.2010.06.064

    Article  PubMed  Google Scholar 

  23. de Moraes, M.A., Albrecht, M.C.R., Ferreira, S.M., Beppu, M.M.: Formation of silk fibroin hydrogel and evaluation of its drug release profile. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.41802

    Article  Google Scholar 

  24. Hu, Y., Zhang, Q., You, R., Wang, L., Li, M.: The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds. Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/185905

    Article  Google Scholar 

  25. Nisal, A., Sayyad, R., Dhavale, P., Khude, B., Deshpande, R., Mapare, V., Venugopalan, P.: Silk fibroin micro-particle scaffolds with superior compression modulus and slow bioresorption for effective bone regeneration. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-25643-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee, K.Y., Ha, W.S.: DSC studies on bound water in silk fibroin/S-carboxymethyl kerateine blend films. Polymer (1999). https://doi.org/10.1016/S0032-3861(98)00611-9

    Article  Google Scholar 

  27. Motta, A., Fambri, L., Migliaresi, C.: Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol. Chem. Phys. (2002). https://doi.org/10.1002/1521-3935(200207)203:10/11%3c1658::AID-MACP1658%3e3.0.CO;2-3

    Article  Google Scholar 

  28. Hu, X., Kaplan, D., Cebe, P.: Dynamic protein−water relationships during β-sheet formation. Macromolecules (2008). https://doi.org/10.1021/ma071551d

    Article  Google Scholar 

  29. Freddi, G., Pessina, G., Tsukada, M.: Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. Int. J. Biol. Macromol. (1999). https://doi.org/10.1016/S0141-8130(98)00087-7

    Article  PubMed  Google Scholar 

  30. Radu, I.C., Biru, I.E., Damian, C.M., Ion, A.C., Iovu, H., Tanasa, E., Zaharia, C., Galateanu, B.: Grafting versus crosslinking of silk Fibroin-g-PNIPAM via tyrosine-NIPAM bridges. Molecules (2019). https://doi.org/10.3390/molecules24224096

    Article  PubMed  PubMed Central  Google Scholar 

  31. Um, I.C., Kweon, H., Park, Y.H., Hudson, S.: Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int. J. Biol. Macromol. (2001). https://doi.org/10.1016/S0141-8130(01)00159-3

    Article  PubMed  Google Scholar 

  32. Gomes, P.F., Loureiro, J.M., Rodrigues, A.E.: Adsorption equilibrium and kinetics of Immunoglobulin G on a mixed-mode adsorbent in batch and packed bed configuration. J. Chromatogr. A (2017). https://doi.org/10.1016/j.chroma.2017.10.003

    Article  PubMed  Google Scholar 

  33. Rastogi, S., Kandasubramanian, B.: Progressive trends in heavy metal ions and dyes adsorption using silk fibroin composites. Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-019-07280-7

    Article  Google Scholar 

  34. Bresolin, I.T.L., Souza, M.C.M., Bueno, S.M.A.: A new process of IgG purification by negative chromatography: adsorption aspects of human serum proteins onto omega-amynodecyl-agarose. J. Chrom. B (2010). https://doi.org/10.1016/j.jchromb.2010.06.009

    Article  Google Scholar 

  35. Jin, Y., Luo, G., Oka, T., Manabe, T.: Estimation of isoelectric points of human plasma proteins employing capillary isoelectric focusing and peptide isoelectric point markers. Electrophor. (2002). https://doi.org/10.1002/1522-2683(200210)23:19%3c3385::AID-ELPS3385%3e3.0.CO;2-H

    Article  Google Scholar 

  36. Lu, H.L., Lin, D.Q., Gao, D., Yao, S.J.: Evaluation of immunoglobulin adsorption on the hydrophobic charge-induction resins with different ligand densities and pore sizes. J. Chromatogr. A (2013). https://doi.org/10.1016/j.chroma.2012.12.054

    Article  PubMed  Google Scholar 

  37. Mathes, J., Friess, W.: Influence of pH and ionic strength on IgG adsorption to vials. Eur. J. Pharm. Biopharm. (2011). https://doi.org/10.1016/j.ejpb.2011.03.009

    Article  PubMed  Google Scholar 

  38. Saksena, S., Zydney, A.L.: Effect of solution pH and ionic strength on the separation of albumin from immunoglobulins (IgG) by selective filtration. Biotechnol. Bioeng. (1994). https://doi.org/10.1002/bit.260431009

    Article  PubMed  Google Scholar 

  39. Xu, W., Cao, J.F., Zhang, Y.Y., Shu, Y., Wang, J.H.: Boronic acid modified polyoxometalate-alginate hybrid for the isolation of glycoproteins at neutral environment. Talanta (2020). https://doi.org/10.1016/j.talanta.2019.120620

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nitayaphat, W., Jintakosol, T.: Efficient removal of cationic and anionic dyes from aqueous solutions using regenerated silk fibroin beads. Asian. J. Chem. (2020). https://doi.org/10.14233/ajchem.2020.22650

    Article  Google Scholar 

  41. Fishman, J.B., Berg, E.A.: Protein A and protein G purification of antibodies. Cold Spring Harb Protoc (2019). https://doi.org/10.1101/pdb.prot099143

    Article  PubMed  Google Scholar 

  42. Sigma-Aldrich. Protein G Agarose lyophilized powder product specification https://www.sigmaaldrich.com/specification-sheets/360/314/P7700-BULK________SIGMA____.pdf Accessed 13 Aug 2023

  43. Mourão, C.A., Marcuz, C., Haupt, K., Bueno, S.M.A.: Polyacrylamide-alginate (PAAm-Alg) and phospho-L-tyrosine-linked PAAm-Alg monolithic cryogels: Purification of IgG from human serum. J. Chromatogr. B (2019). https://doi.org/10.1016/j.jchromb.2019.121783

    Article  Google Scholar 

  44. Marcuz, C., Mourão, C.A., Haupt, K., Bueno, S.M.A.: Performance of phospho-L-tyrosine immobilized onto alginate/polyacrylamide-based cryogels: effect of ligand coupling on human IgG adsorption and Fab fragments separation. J. Chromatogr. B (2021). https://doi.org/10.1016/j.jchromb.2021.122530

    Article  Google Scholar 

  45. Shinku, C.A., Martins, T.D., Bresolin, I.T., Bresolin, I.R.: Human immunoglobulin G adsorption in hydrophobic ligands: equilibrium data, isotherm modelling and prediction using artificial neural networks. Chem. Pap. (2023). https://doi.org/10.1007/s11696-022-02548-8

    Article  Google Scholar 

  46. Hirano, A., Kanoh, S., Shiraki, K., Wada, M., Kitamura, M., Kato, K.: Selective and high-capacity binding of immunoglobulin G to zirconia nanoparticles modified with phosphate groups. Colloids Surf. B (2023). https://doi.org/10.1016/j.colsurfb.2023.113291

    Article  Google Scholar 

  47. Capela, E.V., Bairos, J., Pedro, A.Q., Neves, M.C., Aires-Barros, M.R., Azevedo, A.M., Coutinho, J.A.P., Tavares, A.P.M., Freire, M.G.: Supported ionic liquids as customizable materials to purify immunoglobulin G. Sep. Purif. Technol. (2023). https://doi.org/10.1016/j.seppur.2022.122464

    Article  Google Scholar 

  48. Passaro, A.C.M., Mozetic, T.M., Schmitz, J.E., da Silva Jr, I.J., Martins, T.D., Bresolin, I.T.L.: Human immunoglobulin G adsorption in epoxy chitosan/alginate adsorbents: evaluation of isotherms by artificial neural networks. Chem. Prod. Process. Model. (2019). https://doi.org/10.1515/cppm-2019-0077

    Article  Google Scholar 

  49. Dong, Q., Yang, M., Wang, Y., Guan, Y., Zhang, W., Zhang, Y.: Peptide-crosslinked molecularly imprinted polymers for efficient separation of immunoglobulin G from human serum. Biomater. Sci. (2023). https://doi.org/10.1039/D2BM01450E

    Article  PubMed  Google Scholar 

  50. Guo, P.F., Wang, X.M., Wang, M.M., Yang, T., Chen, M.L., Wang, J.H.: Boron-titanate monolayer nanosheets for highly selective adsorption of immunoglobulin G. Nanoscale (2019). https://doi.org/10.1039/C9NR01111K

    Article  PubMed  Google Scholar 

  51. de Oliveira Barud, H.G., da Silva, R.R., da Silva Barud, H., Tercjak, A., Gutierrez, J., Lustri, W.R., Ribeiro, S.J.: A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2016.07.059

    Article  PubMed  Google Scholar 

  52. Rockwood, D.N., Preda, R.C., Yücel, T., Wang, X., Lovett, M.L., Kaplan, D.L.: Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. (2011). https://doi.org/10.1038/nprot.2011.379

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sharma, S., Agarwal, G.P.: Interactions of proteins with immobilized metal ions: a comparative analysis using various isotherm models. Anal. Biochem. (2001). https://doi.org/10.1006/abio.2000.4894

    Article  PubMed  Google Scholar 

  54. Vermeer, A.W., Norde, W.: The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys. J. (2000). https://doi.org/10.1016/S0006-3495(00)76602-1

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vidarsson, G., Dekkers, G., Rispens, T.: IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. (2014). https://doi.org/10.3389/fimmu.2014.00520

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil); Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP/Brazil; Grant 2022/05336-6 and 2018/15539-6); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil: Finance Code 001 and PNPD program).

Author information

Authors and Affiliations

Authors

Contributions

AOSJ: conceptualization, methodology, formal analysis resources, writing, and visualization; CPP: conceptualization, methodology, formal analysis resources, writing and original draft, visualization; ITLB: conceptualization, funding, review and editing, supervision, and MAM: conceptualization, funding, review and editing, supervision.

Corresponding author

Correspondence to Igor T. L. Bresolin.

Ethics declarations

Competing interest

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, A.O., Pinheiro, C.P., Bresolin, I.T.L. et al. Adsorption of human immunoglobulin G using fibroin microparticles. Adsorption (2024). https://doi.org/10.1007/s10450-024-00440-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00440-3

Keywords

Navigation