Skip to main content
Log in

Glucose-Binding Dioclea bicolor Lectin (DBL): Purification, Characterization, Structural Analysis, and Antibacterial Properties

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

In this study, we purified a lectin isolated from the seeds of Dioclea bicolor (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, β, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56–50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other Diocleinae lectins. Circular dichroism showed the prominent β-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of –26,642.69141/Normalized DOPE score of –1.84041. The DBL monomer was found to consist a β-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 μg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (p < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352. https://doi.org/10.1104/pp.109.2.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Van Damme EJM (2022) 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconj J 39:83–97. https://doi.org/10.1007/s10719-021-10015-x

    Article  CAS  PubMed  Google Scholar 

  3. Barbosa PPS, Araújo FN, Almeida JM, Gadelha TS (2021) Leguminosae Lectins as Biological Tools in Medical Research: a Review. Braz Arch Biol Technol 64:1–7. https://doi.org/10.1590/1678-4324-2021200170

    Article  CAS  Google Scholar 

  4. Lagarda-Diaz I, Guzman-Partida AM, Vazquez-Moreno L (2017) Legume lectins: proteins with diverse applications. Int J Mol Sci 18:1–18. https://doi.org/10.3390/ijms18061242

    Article  CAS  Google Scholar 

  5. Barroso-Neto IL, Delatorre P, Teixeira CS, Correia JL, Cajazeiras JB, Pereira RI, Nascimento KS, Laranjeira EP, Pires AF, Assreuy AM, Rocha BA, Cavada BS (2016) Structural analysis of a Dioclea sclerocarpa lectin: Study on the vasorelaxant properties of Dioclea lectins. Int J Biol Macromol 82:464–470. https://doi.org/10.1016/j.ijbiomac.2015.10.052

    Article  CAS  PubMed  Google Scholar 

  6. Cavada BS, Pinto-Junior VR, Osterne VJS, Nascimento KS (2018) ConA-like lectins: high similarity proteins as models to study structure/biological activities relationships. Int J Mol Sci 20:1–24. https://doi.org/10.3390/ijms20010030

    Article  CAS  Google Scholar 

  7. Cavada BS, Silva MTL, Osterne VJS, Pinto-Junior VR, Lossio CF, Madeira JC, Pereira MG, Leal RB, Ferreira WP, Nascimento KS, Assreuy AMS (2020) Exploring the carbohydrate-binding ability of lectin in inflammation models. J Mol Recognit 33:1–10. https://doi.org/10.1002/jmr.2870

    Article  CAS  Google Scholar 

  8. Cavada BS, Barbosa T, Arruda S, Grangeiro TB, Barral-Netto M (2001) Revisiting proteus: do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins. Curr Protein Pept Sci 2:123–135. https://doi.org/10.2174/1389203013381152

    Article  CAS  PubMed  Google Scholar 

  9. Vasconcelos MA, Arruda FV, Carneiro VA, Silva HC, Nascimento KS, Sampaio AH, Cavada BS, Teixeira EH, Henriques M, Pereira MO (2014) Effect of algae and plant lectins on planktonic growth and biofilm formation in clinically relevant bacteria and yeasts. Biomed Res Int 2014:1–9. https://doi.org/10.1155/2014/365272

    Article  CAS  Google Scholar 

  10. Silva NRG, Araújo FN (2021) Antibacterial activity of plant lectins: a review. Braz Arch Biol Technol 64:1–14. https://doi.org/10.1590/1678-4324-2021200631

    Article  CAS  Google Scholar 

  11. Maxwell RH (1969) The genus Dioclea (Fabaceae) in the New World. Southern Illinois Univ., Tese DR

  12. Queiroz LP, Snak C (2020) Revisiting the taxonomy of Dioclea and related genera (Leguminosae, Papilionoideae), with new generic circumscriptions. PhytoKeys 164:67–114. https://doi.org/10.3897/phytokeys.164.55441

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernandes AV, Ramos MV, Costa JH, Vasconcelos IM, Moreira RA, Moreno FBMB, Santos MEC, Gonçalves JFC (2015) Lectin genes and their mature proteins: Still an exciting matter, as revealed by biochemistry and bioinformatics analyses of newly reported proteins. Biochem Syst Ecol 60:46–55. https://doi.org/10.1016/j.bse.2015.02.002

    Article  CAS  Google Scholar 

  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Biochemistry 722:48–254. https://doi.org/10.1006/abio.1976.9999

    Article  Google Scholar 

  16. Moreira RA, Perrone JC (1977) Purification and partial characterization of a lectin from Phaseolus vulgaris. Plant Physiol 59:783–787. https://doi.org/10.1104/pp.59.5.783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramos MV, Moreira RA, Cavada BS, Oliveira JTA, Rouge P (1996) Interaction of lectins from the subtribe Diocleinae with specific ligands. Rev Bras Fisiol Veg 8:193–199

    CAS  Google Scholar 

  18. Sampaio AH, Rogers DJ, Barwell CJ (1998) A galactose-specific lectin from the red marine alga Ptilota filicina. Phytochemistry 48:765–769. https://doi.org/10.1016/s0031-9422(97)00966-7

    Article  CAS  PubMed  Google Scholar 

  19. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  PubMed  Google Scholar 

  20. Carneiro RF, Melo AA, Almeida AS, Moura RM, Chaves RP, Sousa BL, Nascimento KS, Sampaio SS, Lima JP, Cavada BS, Nagano CS, Sampaio AH (2013) H-3, a new lectin from the marine sponge Haliclona caerulea: purification and mass spectrometric characterization. Int J Biochem Cell Biol 45:2864–2873. https://doi.org/10.1016/j.biocel.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  21. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. (2005) Protein identification and analysis tools on the ExPASy server In: Walker JM (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571

  22. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890. https://doi.org/10.1093/nar/16.22.10881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:320–324. https://doi.org/10.1093/nar/gku316

    Article  CAS  Google Scholar 

  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saitou N, Nei M (1987) On the maximum-likelihood method for molecular phylogeny. Jpn J Genet 62:547–548

    Google Scholar 

  26. Carneiro RF, Torres RCF, Chaves R, de Vasconcelos MA, de Sousa BL, Goveia ACR, Arruda FV, Matos MN, Matthews-Cascon H, Freire VN, Teixeira EH, Nagano CS, Sampaio AH (2017) Purification, biochemical characterization, and amino acid sequence of a novel type of lectin from Aplysia dactylomela eggs with antibacterial/antibiofilm potential. Mar Biotechnol 19(1):49–64. https://doi.org/10.1007/s10126-017-9728-x

    Article  CAS  Google Scholar 

  27. Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32(Web Server):668–673. https://doi.org/10.1093/nar/gkh371

    Article  CAS  Google Scholar 

  28. Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535. https://doi.org/10.1038/nprot.2006.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Webb B, Sali A (2016) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics 54:5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

    Article  PubMed  Google Scholar 

  30. Ding S, Li Y, Shi Z, Yan S (2014) A protein structural classes prediction method based on predicted secondary structure and PSI-BLAST profile. Biochimie 97:60–65. https://doi.org/10.1016/j.biochi.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira TM, Delatorre P, Rocha BAM, Souza EP, Nascimento KS, Bezerra G, Moura ATR, Benevides RG, Bezerra EHS, Moreno FBMB, Freire VN, Azevedo WF Jr, Cavada BS (2008) Crystal structure of Dioclea rostrata lectin: insights into understanding the pH-dependent dimer-tetramer equilibrium and the structural basis for carbohydrate recognition in Diocleinae lectins. J Struct Biol 164:177–182. https://doi.org/10.1016/j.jsb.2008.05.012

    Article  CAS  PubMed  Google Scholar 

  32. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315. https://doi.org/10.1002/pro.3330

    Article  CAS  PubMed  Google Scholar 

  33. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:1388–1395. https://doi.org/10.1093/nar/gkaa971

    Article  CAS  Google Scholar 

  34. Schöning-Stierand K, Diedrich K, Fährrolfes RR, Flachsenberg F, Meyder A, Nittinger E, Steinegger R, Rarey M (2020) ProteinsPlus: interactive analysis of protein–ligand binding interfaces. Nucleic Acids Res 48:48–53. https://doi.org/10.1093/nar/gkaa235

    Article  CAS  Google Scholar 

  35. Trott O, Olson AJ (2009) Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  36. Leal RB, Pinto-Junior VR, Osterne VJS, Wolin IAV, Nascimento APM, Neco AHB, Araripe DA, Welter PG, Neto CC, Correia JLA, Rocha CRC, Nascimento KS, Cavada BS (2018) Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int J Biol Macromol 114:64–76. https://doi.org/10.1016/j.ijbiomac.2018.03.080

    Article  CAS  PubMed  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Molec Graphics 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  38. Clinical and Laboratory Standards Institute (2017) Performance standards for antimicrobial susceptibility testing: approved standard - 27th ed. CLSI Document M100-S27. CLSI, Wayne

  39. Rosato A, Vitali C, Laurentis N, Armenise DO, Milillo MA (2007) Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine 14:727–732. https://doi.org/10.1016/j.phymed.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  40. Lechartier B, Hartkoonr RC, Cole ST (2012) In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:5790–5793. https://doi.org/10.1128/AAC.01476-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52. https://doi.org/10.1093/jac/dkg301

  42. Cavada BS, Pinto-Junior VR, Osterne VJS, Lossio CF, Silva MTL, Correia JLA, Correia SEG, Nagano CS, Oliveira MV, Lima LD, Vital APMS, Leal RB, Nascimento KSA (2020) Diocleinae type II lectin from Dioclea lasiophylla Mart. ex Benth seeds specific to α-lactose/GalNAc. Process Biochem 93:104–114. https://doi.org/10.1016/j.procbio.2020.03.026

    Article  CAS  Google Scholar 

  43. Melgarejo LM, Vega N, Pérez G (2005) Isolation and characterization of novel lectins from Canavalia ensiformis DC and Dioclea grandiflora Mart. Ex Benth. Seeds Braz J Plant Physiol 17:315–324. https://doi.org/10.1590/S1677-04202005000300006

    Article  CAS  Google Scholar 

  44. Moreira RA, Barros AC, Stewart JC, Pusztai A (1983) Isolation and characterization of a lectin from the seeds of Dioclea grandiflora (Mart). Planta 158:63–69. https://doi.org/10.1007/BF00395404

    Article  CAS  PubMed  Google Scholar 

  45. Pinto-Junior VR, de Santiago MQ, Osterne VJS, Correia JLA, Pereira-Junior FN, Cajazeiras JB, de Vasconcelos MA, Teixeira EH, do Nascimento ASF, Miguel TBAR, Miguel EC, Sampaio AH, do Nascimento KS, Nagano CS, Cavada BS (2013) Purification, partial characterization and immobilization of a mannose-specific lectin from seeds of Dioclea lasiophylla mart. Molecules 18:10857–10869. https://doi.org/10.3390/molecules180910857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cavada BS, Osterne VJS, Lossio CF, Pinto-Junior VR, Oliveira MV, Silva MTL, Leal RB, Nascimento KS (2019) One century of ConA and 40 years of ConBr research: a structural review. Int J Biol Macromol 134:901–911. https://doi.org/10.1016/j.ijbiomac.2019.05.100

    Article  CAS  PubMed  Google Scholar 

  47. Weatherman RV, Mortell KH, Chervenak M, Kiessling LL, Toone EJ (1996) Specificity of C-glycoside complexation by mannose/glucose specific lectins. Biochemistry 35:3619–3624. https://doi.org/10.1021/bi951916z

    Article  CAS  PubMed  Google Scholar 

  48. Nonis SG, Haywood J, Schmidberger JW, Bond CS, Mylne JS (2020) Structural basis for a natural circular permutation in proteins. bioRxiv. 1–36 https://doi.org/10.1101/2020.10.28.360099

  49. Pinto-Junior VR, Osterne VJS, Santiago MQ, Correia JLA, Pereira-Junior FN, Leal RB, Pereira MG, Chicas LS, Nagano CS, Rocha BAM, Silva-Filho JC, Ferreira WP, Rocha CRC, Nascimento KS, Assreuy AMS, Cavada BS (2017) Structural studies of a vasorelaxant lectin from Dioclea reflexa hook seeds: crystal structure, molecular docking and dynamics. Int J Biol Macromol 98:12–23. https://doi.org/10.1016/j.ijbiomac.2017.01.092

    Article  CAS  PubMed  Google Scholar 

  50. Rangel TBA, Assreuy AMS, Pires AF, Carvalho AU, Benevides RG, Simões RC, Silva HC, Bezerra MJB, Nascimento ASF, Nascimento KS, Nagano CS, Sampaio AH, Delatorre P, Rocha BAM, Fernandes PMB, Cavada BS (2011) Crystallization and characterization of an inflammatory lectin purified from the seeds of Dioclea wilsonii. Molecules 16:5087–5103. https://doi.org/10.3390/molecules16065087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Delatorre P, Rocha BAM, Simões RC, Pereira-Júnior FN, Silva HC, Bezerra EHS, Bezerra MJB, Marinho ES, Gadelha CAA, Santi-Gadelha T, Farias DL, Assreuy AMS, Marques-Domingos GFO, Nagano CS, Cavada BS (2011) Mass spectrometry and X-ray diffraction analysis of two crystal types of Dioclea virgata lectin: an antinociceptive protein candidate to structure/function analysis. Appl Biochem Biotechnol 164:741–754. https://doi.org/10.1007/s12010-011-9170-x

    Article  CAS  PubMed  Google Scholar 

  52. Correia JLA, Nascimento ASF, Cajazeiras JB, Gondim ACS, Pereira RI, Sousa BL, Silva ALC, Garcia W, Teixeira EH, Nascimento KS, Rocha BAM, Nagano CS, Sampaio AH, Cavada BS (2011) Molecular characterization and tandem mass spectrometry of the lectin extracted from the seeds of Dioclea sclerocarpa Ducke. Molecules 16:9077–9089. https://doi.org/10.3390/molecules16119077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Figueiredo JG, Bitencourt FS, Mota MRL, Silvestre PP, Aguiar CN, Benevides RG, Nascimento KS, Moura TR, Dal-Secco D, Assreuy AMS, Cunha FQ, Vale MR, Cavada BS, Alencar NMN (2009) Pharmacological analysis of the neutrophil migration induced by D. rostrata lectin: involvement of cytokines and nitric oxide. Toxicon 54:736–744. https://doi.org/10.1016/j.toxicon.2009.05.037

    Article  CAS  PubMed  Google Scholar 

  54. Calvete JJ, Thole HH, Raida M, Urbanke C, Romero A, Grangeiro TB, Ramos MV, Almeida da Rocha IM, Guimarães FN, Cavada BS (1999) Molecular characterization and crystallization of Diocleinae lectins. Bba-Protein Struct 1430:367–375. https://doi.org/10.1016/s0167-4838(99)00020-5

    Article  CAS  Google Scholar 

  55. Nascimento KS, Santiago MQ, Pinto-Junior VR, Osterne VJS, Martins FWV, Nascimento APM, Wolin IAV, Heinrich IA, Martins MGQ, Silva MTL, Lossio CF, Rocha CRC, Leal RB, Cavada BS (2017) Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int J Biochem Cell Biol 92:79–89. https://doi.org/10.1016/j.biocel.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  56. Bezerra MJB, Rodrigues NVFC, Pires AF, Bezerra GA, Nobre CB, Alencar KLL, Soares PMG, Nascimento KS, Nagano CS, Martins JL, Gruber K, Sampaio AH, Delatorre P, Rocha BAM, Assreuy AMS, Cavada BS (2013) Crystal structure of Dioclea violacea lectin and a comparative study of vasorelaxant properties with Dioclea rostrata lectin. Int J Biochem Cell Biol 45:807–815. https://doi.org/10.1016/j.biocel.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  57. Rangel TBA, Rocha BAM, Bezerra GA, Assreuy AMS, Pires AF, Nascimento ASF, Bezerra MJB, Nascimento KS, Nagano CS, Sampaio AH, Gruber K, Delatorre P, Fernandes PMB, Cavada BS (2012) Crystal structure of a pro-inflammatory lectin from the seeds of Dioclea wilsonii Standl. Biochimie 94:525–532. https://doi.org/10.1016/j.biochi.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  58. Varejao N, Correia MTS, Foguel D (2011) Characterization of the unfolding process of the tetrameric and dimeric forms of Cratylia mollis seed lectin (CRAMOLL 1): effects of natural fragmentation on protein stability. Biochemistry 50:7330–7340. https://doi.org/10.1021/bi200320x

    Article  CAS  PubMed  Google Scholar 

  59. Loris R, Hamelryck T, Bouckaert J, Wyns L (1998) Legume lectin structure. Biochim Biophys Acta 1383:9–36. https://doi.org/10.1016/s0167-4838(97)00182-9

    Article  CAS  PubMed  Google Scholar 

  60. Teixeira CS, Silva HC, Moura TR, Pereira-Júnior FN, Nascimento KS, Nagano CS, Sampaio AH, Delatorre P, Rocha BA, Cavada BS (2012) Crystal structure of the lectin of Camptosema pedicellatum: implications of a conservative substitution at the hydrophobic subsite. J Biochem 152:87–98. https://doi.org/10.1093/jb/mvs047

    Article  CAS  Google Scholar 

  61. Fonseca VJA, Braga AL, Filho JR, Teixeira CS, da Hora GCA, Morais-Braga MFB (2022) A review on the antimicrobial properties of lectins. Int J Biol Macromol 195:163–178. https://doi.org/10.1016/j.ijbiomac.2021.11.209

    Article  CAS  PubMed  Google Scholar 

  62. Coelho LCBB, Silva PMS, Oliveira WF, Moura MC, Pontual EV, Gomes FS, Paiva PMG, Napoleão TH, Correia MTS (2018) Lectins as antimicrobial agents. J Appl Microbiol 125:1238–1252. https://doi.org/10.1111/jam.14055

    Article  CAS  Google Scholar 

  63. Santi-Gadelha T, Gadelha CAA, Aragão KS, Oliveira CC, Mota MRL, Gomes RC, Pires AF, Toyama MH, Toyama DO, Alencar NMN, Criddle DN, Assreuy AMS, Cavada BS (2006) Purification and biological effects of Araucaria angustifólia (Araucariaceae) seed lectin. Biochem Biophys Res Commun 350:1050–1055. https://doi.org/10.1016/j.bbrc.2006.09.149

    Article  CAS  PubMed  Google Scholar 

  64. Moura MC, Napoleao TH, Coriolano MC, Paiva PMG, Figueiredo RCBQ, Coelho LCBB (2015) Water-soluble Moringa oleifera lectin interferes with growth, survival and cell permeability of corrosive and pathogenic bacteria. J Appl Microbiol 119:666–676. https://doi.org/10.1111/jam.12882

    Article  CAS  PubMed  Google Scholar 

  65. Santos VF, Araújo ACJ, Silva ALF, Almeida DV, Freitas PR, Santos ALE, Rocha BAM, Garcia W, Leme AM, Bondan E, Borges FT, Cutrim BS, Silva LCN, Coutinho HDM, Teixeira CS (2020) Dioclea violacea lectin modulates the gentamicin activity against multi-resistant strains and induces nefroprotection during antibiotic exposure. Int J Biol Macromol 146:841–852. https://doi.org/10.1016/j.ijbiomac.2019.09.207

    Article  CAS  PubMed  Google Scholar 

  66. Santos VF, Araújo ACJ, Freitas PR, Silva ALP, Santos ALE, Rocha BAM, Silva RRS, Almeida DV, Garcia W, Coutinho HDM, Teixeira CS (2020) Enhanced antibacterial activity of the gentamicin against multidrug-resistant strains when complexed with Canavalia ensiformis lectin. Microb Pathog 152:104639. https://doi.org/10.1016/j.micpath.2020.104639

    Article  CAS  PubMed  Google Scholar 

  67. Silva RRS, Silva CR, Santos VF, Barbosa CRS, Muniz DF, Santos ALE, Santos MHC, Rocha BAM, Batista KLR, Costa-Júnior LM, Coutinho HDM, Teixeira CS (2019) Parkia platycephala lectin enhances the antibiotic activity against multiresistant bacterial strains and inhibits the development of Haemonchus contortus. Microb Pathog 135:103629. https://doi.org/10.1016/j.micpath.2019.103629

    Article  CAS  PubMed  Google Scholar 

  68. Septama AW, Panichayupakaranant P (2016) Synergistic effect of artocarpin on antibacterial activity of some antibiotics against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Pharm Biol 54:686–691. https://doi.org/10.3109/13880209.2015.1072566

    Article  CAS  PubMed  Google Scholar 

  69. Murray PR, Rosenthal KS, Pfaller MA (2016) Medical microbiology, 8th edn. Elsevier/ Saunders, Philadelphia

    Google Scholar 

  70. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260. https://doi.org/10.1128/MMBR.65.2.232-260.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8:1–10. https://doi.org/10.1186/s13756-019-0533-3

    Article  Google Scholar 

  72. Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  73. Islam B, Khan AU (2012) Lectins: to combat infections. Protein Purif 1:167–188. https://doi.org/10.2174/138920101602150112151907

    Article  CAS  Google Scholar 

  74. Cavalcante TTA, Carneiro VA, Neves CC, Duarte HS, Martins MGQ, Arruda FVS, Vasconcelos MA, Santos HS, Cunha RMS, Cavada BS, Teixeira EH (2013) A ConA-like lectin isolated from Canavalia maritima seeds alters the expression of genes related to virulence and biofilm formation in Streptococcus mutans. Adv Biosci Biotechnol 4:1073–7078. https://doi.org/10.4236/abb.2013.412143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais). Professor Edilberto R. Silveira collected the plant material.

Funding

This research was funded by Fundação de Amparo à Pesquisa do Estado de Minas Gerais FAPEMIG (Grant#: APQ-00224-2 and APQ-02972-22 for Mayron Alves de Vasconcelos).

Author information

Authors and Affiliations

Authors

Contributions

W.F. Reis, M. E.S. Silva, R.C.F. Torres - Contributed in the isolation and characterization of the lectin; and writing of the manuscript. A.C.S. Gondim, A.L. Andrade - Contributed in antibacterial and antibiofilm activities and writing of the manuscript. R.F. Carneiro, C.S. Nagano - Contributed in UPLC and Mass spectrometry assays and writing of the manuscript. C.S. Teixeira, L.C.B.F. Gomes, B. L. Sousa - Contributed in Computational assay and writing of the manuscript. M.A. Vasconcelos, E H. Teixeira and A. H. Sampaio - Contributed in the analysis of the data, critical reading and draft of the manuscript, design the study, supervised the laboratory work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mayron A. Vasconcelos.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7226 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, W.F., Silva, M.E.S., Gondim, A.C.S. et al. Glucose-Binding Dioclea bicolor Lectin (DBL): Purification, Characterization, Structural Analysis, and Antibacterial Properties. Protein J (2024). https://doi.org/10.1007/s10930-024-10199-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10199-9

Keywords

Navigation