Skip to main content
Log in

Study on the process of oxidation resistance composite coating on graphite electrode by dipping method

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Graphite material is a kind of conductive material with excellent thermal shock resistance, is an important strategic mineral resources, widely used in iron and steel smelting, aviation, aerospace and other fields. However, the graphite electrode is easy to be oxidized in the air, resulting in a large amount of graphite electrode loss. In this paper, a new impregnation material is used to prepare graphite electrode oxidation resistance coating, by changing the ratio of raw materials, impregnation times, sintering process and other process parameters to prepare samples, and then oxidation resistance experiment to characterize its antioxidant capacity. The optimum technological parameters of graphite electrode coating obtained in this paper are: The content of antioxidant is Si 4.6%, SiC 5.8%, TiO2 6.9%, Al2O3 5.4%, H3BO3 3.7%, carboxymethyl cellulose 2.6%, deionized water 70%, hot impregnation twice, after sintering in nitrogen atmosphere at 400 ℃ for 30 min, In the range of 800 ℃~1200 ℃, the weight loss of the graphite samples with anti-oxidation coating is reduced by 7.3%~11.3%. The coating can protect the anti-oxidation of the graphite matrix well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kim, J.W., Park, S.H., Kim, H.C., Jung, Y.G., Lee, J.H., Paik, U.G.: Adv. Si-Based Ceram. Compos. 287, 57–62 (2005). https://doi.org/10.4028/www.scientific.net/KEM.287.57 SiC oxidation protective coating for graphite mould [J]

  2. Zeng, G.S., Xie, G., Yang, D.J., Wang, D.J., Zhang, X.F.: Oxidation resistivity of boride coating of graphite anode sample [J]. Mater. Chem. Phys. 95, 183–187 (2006). https://doi.org/10.1016/j.matchemphys.2005.05.053

    Article  CAS  Google Scholar 

  3. Wang, Z., Han, E., Ke, W.: Corros. Sci. 49, 2237–2253 (2007). https://doi.org/10.1016/j.corsci.2006.10.024 Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings [J]

  4. Abdollahi, A., Ehsani, N., SiC Gradient Oxidation Protective Coating on Graphite by Modified Reactive Melt Infiltration Method: Metall. Mater. Trans. Phys. Metall. Mater. Sci. 48A, 265–278 (2017). https://doi.org/10.1007/s11661-016-3813-z : Effects of Processing Parameters on Transition Interface Thickness and High-Temperature Anti-oxidation Behavior [J]

  5. Wang, P., Bai, Y., Zhao, X., Ren, X., Sun, W.: Oxidation protection of CrSi2-HfB2-SiC/SiC coating for graphite in variable-temperature environment [J]. Corros. Sci. 199 (2022). https://doi.org/10.1016/j.corsci.2022.110165

  6. Chen, Y., Pang, J., Li, S., Zhang, Z.: High-temperature oxidation behavior and related mechanism of RuT400 Vermicular Graphite Iron [J], Acta Metall. Sinica-English Lett. 35, 1117–1130 (2022). https://doi.org/10.1007/s40195-021-01343-w

    Article  CAS  Google Scholar 

  7. Zhou, W., Xiao, P., Luo, W., Li, Y.: Microstructural evolution of SiC coating on C/C composites exposed to 1500 degrees C in ambient air [J]. Ceram. Int. 45, 854–860 (2019). https://doi.org/10.1016/j.ceramint.2018.09.255

    Article  CAS  Google Scholar 

  8. Yang, H., Zhao, H., Wang, T., Zhang, K., Li, Z., Liu, X., Liu, B.: Ceram. Int. 45, 21917–21922 (2019). https://doi.org/10.1016/j.ceramint.2019.07.203 SiC/YSiC composite coating on matrix graphite sphere prepared by pack cementation and molten salt [J]

  9. Hu, D., Fu, Q., Zhou, L., Liu, B., Sun, J.: Crack development behavior in thermally sprayed anti-oxidation coating under repeated thermal-oxygen coupling environment [J]. Ceram. Int. 47, 15328–15336 (2021). https://doi.org/10.1016/j.ceramint.2021.02.098

    Article  CAS  Google Scholar 

  10. Niu, F., Wang, Y., Wang, Y., Ma, L., Liu, J., Wang, C.: A crack-free SiC nanowire-toughened Si-Mo-W-C coating prepared on graphite materials for enhancing the oxidation resistance [J]. Surf. Coat. Technol. 344, 52–57 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.109

    Article  CAS  Google Scholar 

  11. Abdollahi, A., Ehsani, N., Valefi, Z., Khalifesoltani, A.: J. Mater. Eng. Perform. 26, 2878–2889 (2017). https://doi.org/10.1007/s11665-017-2725-4 SiC Nanoparticles Toughened-SiC/MoSi2-SiC Multilayer Functionally Graded Oxidation Protective Coating for Carbon Materials at High Temperatures [J]

  12. Yang, H., Zhao, H., Li, Z., Liu, X., Zhang, K., Wang, T., Liu, B.: Review of oxidant resistant coating on graphite substrate of HTR fuel element [J]. J. Cent. South. Univ. 26, 2915–2929 (2019). https://doi.org/10.1007/s11771-019-4224-2

    Article  CAS  Google Scholar 

  13. Li, S., Zhang, M., Huang, D., Li, L., Li, J., Huang, Q.: Preparation and antioxidation property of a SiC-MoSi2 -Si multilayer coating on a C/C composite [J], N. Carbon Mater., 33 pp. 82–87. (2018). https://doi.org/10.19869/j.ncm.1007-8827.2018.01.004

  14. Yang, X., Su, Z., Huang, Q., Chai, L.: Preparation and oxidation resistance of mullite/SiC coating for carbon materials at 1150 degrees C [J]. T Nonferr Metal Soc. 22, 2997–3002 (2012). https://doi.org/10.1016/s1003-6326(11)61562-8

    Article  CAS  Google Scholar 

  15. Zhang, Y.-L., Li, H.-J., Fu, Q.-G., Li, K.-Z., Ouyang, H.-B.: Preparation and Performance of Pre-coated Carbon Layer for Carbon/Carbon composites [J]. J. Inorg. Mater. 24, 125–128 (2009). https://doi.org/10.3724/sp.J.1077.2009.00125

    Article  CAS  Google Scholar 

  16. Jiang, Y., Ren, Q., Ru, H., Mao, Z., Xu, H.: Ceram. Int. 45, 539–549 (2019). https://doi.org/10.1016/j.ceramint.2018.09.206 Oxidation protection of graphite materials by single-phase ultra-high temperature boride modified monolayer Si-SiC coating [J]

  17. Shao, H.C., Liu, G.W., Qiao, G.J., Xiao, Z.C., Peng, Z.G., Hou, W.Q., Su, J.M.: Preparation and protective surface coatings for low density C/C composite for harden insulation [J]. Mater. Res. Innov. 17, 228–237 (2013). https://doi.org/10.1179/1433075x12y.0000000066

    Article  CAS  Google Scholar 

  18. Jiang, Y., Chang, L., Ru, H., Wang, W., Zhang, C.: Surf. Coat. Technol. 350, 410–418 (2018). https://doi.org/10.1016/j.surfcoat.2018.07.041 Microstructure and oxidation behaviors of dense mullite-silicon carbide-silicon coating for graphite fabricated by dipping-pyrolysis and reactive infiltration [J]

  19. Li, Y., Liang, W., Shi, Y., Zhou, W.: LPCVD-based SiO2/SiC multi-layers coating on graphite for improved anti-oxidation at wide-ranged temperatures [J]. Compos. B Eng. 146, 155–164 (2018). https://doi.org/10.1016/j.compositesb.2018.03.035

    Article  CAS  Google Scholar 

  20. Wei, X., Yang, H., Zhao, H., Liu, X., Zhang, K., Li, Z., Gao, Y., Liu, B.: SiC/MoSi2-SiC-Si Oxidation Protective Coatings for HTR Graphite spheres with residual Si optimized [J]. Mater. 15 (2022). https://doi.org/10.3390/ma15093203

  21. Jiang, Y., Ru, H., Ye, C., Wang, W., Zhang, C., Su, X.: Ceram. Int. 44, 17369–17376 (2018). https://doi.org/10.1016/j.ceramint.2018.06.201 A dense structure Si-SiC coating for oxidation and ablation protection of graphite fabricated by impregnation-pyrolysis and gaseous silicon infiltration [J]

  22. Chen, Y., Wang, C., Zhao, W., Lu, W., Chen, A., Tan, T.: Ceram. Int. 38, 2165–2170 (2012). https://doi.org/10.1016/j.ceramint.2011.10.059 Fabrication of a SiC/Si/MoSi2 multi-coating on graphite materials by a two-step technique [J]

  23. Wang, P., Han, W., Zhang, X., Li, N., Zhao, G., Zhou, S.: (ZrB2-SiC)/SiC oxidation protective coatings for graphite materials [J]. Ceram. Int. 41, 6941–6949 (2015). https://doi.org/10.1016/j.ceramint.2015.01.149

    Article  CAS  Google Scholar 

  24. Chen, P., Pan, L., Xiao, P., Li, Z., Pu, D., Li, J., Pang, L., Li, Y.: Microstructure and anti-oxidation properties of Yb2Si2O7/SiC bilayer coating for C/SiC composites [J], Ceram. Int. 45, 24221–24229 (2019). https://doi.org/10.1016/j.ceramint.2019.08.132

    Article  CAS  Google Scholar 

  25. Yang, X., Huang, Q.-Z., Chang, X., Su, Z.-A., Zhang, M.-Y., Zhou, L.-P., Jin, G.-Y.: Preparation of ZrC-SiC multi-coating on Graphite with ZrSiO4 powder via Pack Cementation [J]. J. Inorg. Mater. 25, 41–46 (2010). https://doi.org/10.3724/sp.J.1077.2010.00041

    Article  CAS  Google Scholar 

  26. Yang, X., Huang, Q., Zou, Y., Chang, X., Su, Z., Zhang, M., Xie, Z.: T Nonferr Metal Soc. 19, 1044–1050 (2009). https://doi.org/10.1016/s1003-6326(08)60404-5 Anti-oxidation behavior of chemical vapor reaction SiC coatings on different carbon materials at high temperatures [J]

  27. Yang, X., Huang, Q., Su, Z., Chai, L., Wang, X., Zhou, L.: Ceram. Int. 39, 5053–5062 (2013). https://doi.org/10.1016/j.ceramint.2012.11.104 A double layer nanostructure SiC coating for anti-oxidation protection of carbon/carbon composites prepared by chemical vapor reaction and chemical vapor deposition [J]

  28. Jiang, Y., Liu, T., Ru, H., Wang, W., Zhang, C., Yue, X.: Oxidation and ablation protection of double layer HfB2-SiC-Si/SiC-Si coating for graphite materials [J]. J. Alloys Compd. 782, 761–771 (2019). https://doi.org/10.1016/j.jallcom.2018.12.256

    Article  CAS  Google Scholar 

  29. Jiang, Y., Chang, L., Ru, H., Wang, W., Zhang, C.: Oxidation and ablation protection of graphite materials by monolayer MoSi2-CrSi2-SiC-Si multiphase coating [J]. Ceram. Int. 44, 20275–20284 (2018). https://doi.org/10.1016/j.ceramint.2018.08.013

    Article  CAS  Google Scholar 

  30. Hu, X., Jiang, R., Luo, F., Lu, Y., Wang, Y., He, Z.: The laser-prepared SiC nanocoating: Preparation, properties and high-temperature oxidation performance [J]. Mater. Res. Express. 8 (2021). https://doi.org/10.1088/2053-1591/ac17ab

  31. Mao, B., Xia, X., Li, C., Zhang, X., Liu, W., Gao, G.: Controllable Preparation and Forming Mechanism of Bamboo-Shaped SiC Nanowires Reinforced SiC Dense Coating [J], Silicon, pp. (2022). https://doi.org/10.1007/s12633-022-02199-0

  32. Aslanoglu, Z.: Performance of a ceramic frit anti-oxidation coating on a MgO-C refractory brick [J], Ceram. Int. 37, 3419–3423 (2011). https://doi.org/10.1016/j.ceramint.2011.05.147

    Article  CAS  Google Scholar 

  33. Jiang, Y., Liu, T., Ru, H., Wang, W., Zhang, C., Wang, L.: Oxidation and ablation protection of multiphase Hf0.5Ta0.5B2-SiC-Si coating for graphite prepared by dipping-pyrolysis and reactive infiltration of gaseous silicon [J]. Appl. Surf. Sci. 459, 527–536 (2018). https://doi.org/10.1016/j.apsusc.2018.08.042

    Article  CAS  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Luo.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, K., Luo, D., Deng, J. et al. Study on the process of oxidation resistance composite coating on graphite electrode by dipping method. J Aust Ceram Soc (2024). https://doi.org/10.1007/s41779-024-01014-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41779-024-01014-w

Keywords

Navigation