Skip to main content
Log in

Gravitational Faraday rotation of light propagation in the Kerr–Newman–Taub–NUT space-time

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the gravitational Faraday effect in the Kerr–Newman–Taub–NUT space-time under the weak deflection limit. Contrary to previously stated zero net effect when the source and the observer are remote from the black hole, a non-zero Faraday rotation has been found. The rotation angle is dependent on the spin and the mass of the black hole and the observer’s angular position, as in the case of the Kerr space-time, with additional contribution of the electrical charge and the NUT charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All calculations have been shown explicitly in the text.]

References

  1. M. Bartelmann, Class. Quantum Grav. 27, 233001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  2. P.V.P. Cunha, C.A.R. Herdeiro, Gen. Relativ. Gravit. 50 (2018)

  3. J. Earman, C. Glymour, Stud. Hist. Philos. Sci. 11, 175 (1980)

    Article  MathSciNet  Google Scholar 

  4. A. Einstein, Ann. Phys. 340, 898 (1911)

    Article  Google Scholar 

  5. H. Ishihara, M. Takahashi, A. Tomimatsu, Phys. Rev. D 38, 472 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Nouri-Zonoz, Phys. Rev. D 60, 024013 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.A. Shoom, Phys. Rev. D 104, 084007 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Kopeikin, B. Mashhoon, Phys. Rev. D 65, 064025 (2002)

    Article  ADS  Google Scholar 

  9. A. Farooqui, N. Kamran, P. Panangaden, Adv. Theor. Math. Phys. 18, 659 (2014)

    Article  MathSciNet  Google Scholar 

  10. P.A. Connors, R.F. Stark, Nature 269, 128 (1977)

    Article  ADS  Google Scholar 

  11. B. Mashhoon, Phys. Rev. D 11, 2679 (1975)

    Article  ADS  Google Scholar 

  12. A.M. Volkov, A.A. Izmest’ev, G.V. Skrotskiǐ, Sov. Phys. JETP 32(4), 686 (1971)

    ADS  Google Scholar 

  13. A. Brodutch, T.F. Demarie, D.R. Terno, Phys. Rev. D 84, 104043 (2011)

    Article  ADS  Google Scholar 

  14. C. Chakraborty, Phys. Rev. D 105, 064072 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Sereno, Phys. Rev. D 69, 087501 (2004)

    Article  ADS  Google Scholar 

  16. M. Sereno, Mon. Not. R. Astron. Soc. 356, 381 (2004)

    Article  ADS  Google Scholar 

  17. S.R. Dolan, Int. J. Mod. Phys. D 27(11), 1843010 (2018)

    Article  ADS  Google Scholar 

  18. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman, London, 1973)

    Google Scholar 

  19. N.L. Balazs, Phys. Rev. 110, 236 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Plebanski, Phys. Rev. 118, 1396 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  21. R.F. Stark, P.A. Connors, Nature 266, 429 (1977)

    Article  ADS  Google Scholar 

  22. F. Fayos, J. Llosa, Gen. Relat. Grav. 14, 865 (1982)

    Article  ADS  Google Scholar 

  23. F. Tamburini, F. Feleppa, I. Licata, B. Thidé, Phys. Rev. A 104, 013718 (2021)

    Article  ADS  Google Scholar 

  24. Z. Gelles, E. Himwich, M.D. Johnson, D.C.M. Palumbo, Phys. Rev. D 104, 044060 (2021)

    Article  ADS  Google Scholar 

  25. W. Chen, M. Chung, Y. Huang, J. Kim, J. High Energy Phys. 2022, 58 (2022)

    Article  Google Scholar 

  26. B. Chen, R. Kantowski, X. Dai, E.A. Baron, P. Maddumage, Astrophys. J. Suppl. Ser. 218, 4 (2015)

    Article  ADS  Google Scholar 

  27. J. Dexter, Mon. Not. R. Astron. Soc. 462, 115 (2016)

    Article  ADS  Google Scholar 

  28. T. Kawashima, K. Ohsuga, H.R. Takahashi, Astrophys. J. 949, 101 (2021)

    Article  ADS  Google Scholar 

  29. B. Chen, Sci. Rep. 5, 16860 (2015)

    Article  ADS  Google Scholar 

  30. S. Hou, X. Fan, Z. Zhu, Phys. Rev. D 100, 064028 (2019)

    Article  ADS  Google Scholar 

  31. A. Wang, Phys. Rev. D. 44, 1120 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Piran, P.N. Safier, Nature 318, 271 (1985)

    Article  ADS  Google Scholar 

  33. X. Qin, S. Chen, Z. Zhang, J. Jing, Astrophys. J. 938, 2 (2022)

    Article  ADS  Google Scholar 

  34. X. Qin, S. Chen, J. Jing, Eur. Phys. J. C 82, 784 (2022)

    Article  ADS  Google Scholar 

  35. F.J. Ernst, J. Math. Phys. 17, 54 (1976)

    Article  ADS  Google Scholar 

  36. A. Aliev, D. Gal’tsov, Astrophys. Space Sci. 155, 181 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Al-Badawi, Phys. Lett. B 683, 50 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Halilsoy, O. Gurtug, Phys. Rev. D 75, 124021 (2006)

    Article  ADS  Google Scholar 

  39. C. Park, D.H. Kim, Eur. Phys. J. C 81 (2021)

  40. J. Kim, Phys. Rev. D 106, L081901 (2022)

    Article  ADS  Google Scholar 

  41. J.X. Feng, F.W. Shu, A. Wang, Nucl. Phys. B 973, 115578 (2020)

    Article  Google Scholar 

  42. Z. Li, J. Qiao, W. Zhao, X. Er, J. Cosmol. Astropart. Phys. 10, 095 (2022)

    Article  ADS  Google Scholar 

  43. T. Mishima, S. Tomizawa, Phys. Rev. D 96, 024023 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Tomimatsu, Gen. Relat. Grav. 21, 613 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  45. S. Tomizawa, T. Mishima, Phys. Rev. D 90, 044036 (2013)

    Article  ADS  Google Scholar 

  46. S. Tomizawa, T. Mishima, Phys. Rev. D 91, 124058 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. J.B. Griffiths, J. Podolský, Exact Space-Times in Einstein’s General Relativity (Cambridge University Press, Cambridge, 1973)

    Google Scholar 

  48. E. Newman, L.A. Tamburino, T.W.J. Unti, J. Math. Phys. 4, 915 (1963)

    Article  ADS  Google Scholar 

  49. P. McGuire, R. Ruffini, Phys. Rev. D 12, 3019 (1975)

    Article  ADS  Google Scholar 

  50. N. Dadhich, Z. Turakulov, Class. Quantum Grav. 19, 2765 (2001)

    Article  ADS  Google Scholar 

  51. D. Bini, C. Cherubini, R.T. Jantzen, B. Mashhoon, Class. Quantum Grav. 20, 457 (2003)

    Article  ADS  Google Scholar 

  52. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983)

    Google Scholar 

  53. B.D. Carter, Commun. Math. Phys. 10, 280 (1968)

    Article  ADS  Google Scholar 

  54. I. Bray, Phys. Rev. D 34, 367 (1986)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Xiaokai He, Xiaoning Wu and Naqing Xie for their valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Guo.

Appendix A: The geodesic equations and determination of the deflection angle

Appendix A: The geodesic equations and determination of the deflection angle

In this appendix, we mainly focus on the derivation of the geodesic equations and the usage of these equations to establish the relationship between constants of motion and the deflection angles. We start from the Hamilton-Jacobi equations for KNTN space-time and use separation of variables to derive ODEs of the coordinates. The case \(\displaystyle \theta \equiv \frac{\pi }{2}\) is treated separately. Then we rewrite these equations in integral form and calculate the integrals over r and \(\theta\) respectively. Finally, we use Taylor expansion with respect to \(\Delta \theta\) for the evaluation of these integrals, in order to solve the value of \(\Delta \theta\) and \(\Delta \phi\).

Following [52], the Hamilton-Jacobi equation governing geodesic motion of KNTN metric

$$\begin{aligned} 2 \frac{\partial S}{\partial \tau }&=g^{\mu \nu }\frac{\partial S}{\partial x^{\mu }} \frac{\partial S}{\partial x^{\nu }}\\&=-\frac{\Sigma }{\Delta }\left( (1+\frac{a p}{\Sigma }) \frac{\partial S}{\partial t} +\frac{a}{\Sigma }\frac{\partial S}{\partial \phi }\right) ^2 +\frac{\Sigma }{\sin ^2\theta } \left( \frac{p}{\Sigma }\frac{\partial S}{\partial t} +\frac{1}{\Sigma }\frac{\partial S}{\partial \phi }\right) ^2\\&\quad +\frac{\Delta }{\Sigma }\left( \frac{\partial S}{\partial r}\right) ^2 +\frac{1}{\Sigma }\left( \frac{\partial S}{\partial \theta }\right) ^2 \end{aligned}$$
(A.1)

could be evaluated by imposing the assumption of the principal function for null geodesics

$$\begin{aligned} S = -E t + L_{z} \phi + S_{r}(r) + S_{\theta }(\theta ). \end{aligned}$$
(A.2)

Here E and \(L_{z}\) are the conserved quantities corresponding to the Killing vectors \(\displaystyle \frac{\partial }{\partial t}\) and \(\displaystyle \frac{\partial }{\partial \phi }\) of the KNTN space-time:

$$\begin{aligned} E&= \frac{1}{\Sigma } \left( (\Delta -a^2\sin ^2\theta )\dot{t} +(\Delta p-a(\Sigma +a p)\sin ^2\theta )\dot{\phi }\right) \\ L_{z}&= \frac{1}{\Sigma } \left( (\Delta p-a(\Sigma +a p)\sin ^2\theta )\dot{t} +((\Sigma +a p)^2\sin ^2\theta - p^2 \Delta )\dot{\phi }\right) , \end{aligned}$$
(A.3)

and the principal function S does not explicitly include the affine parameter \(\tau\) since the geodesics in consideration are null [53].

The resulting equation

$$\begin{aligned} \frac{1}{\Delta }\left( -E(\Sigma +a p)+a L_{z}\right) ^2 -\frac{1}{\sin ^2\theta }(-E p + L_{z})^2 -\Delta \left( \frac{{\text{d}}S_{r}}{{\text{d}}r}\right) ^2 -\left( \frac{{\text{d}}S_{\theta }}{{\text{d}}\theta }\right) ^2 =0 \end{aligned}$$
(A.4)

is separated with respect to the variables r and \(\theta\) into

$$\begin{aligned} -\mathcal {Q}&=\Delta \left( \frac{{\text{d}}S_{r}}{{\text{d}}r}\right) ^2 -\frac{1}{\Delta }\left( -E (r^2+l^2+a^2)+a L_{z}\right) ^2 +(L_{z}-a E)^2,\\ \mathcal {Q}&=\left( \frac{{\text{d}}S_{\theta }}{{\text{d}}\theta }\right) ^2 +\frac{1}{\sin ^2\theta } (-p E+L_{z})^2-(L_{z}-a E)^2 \end{aligned}$$
(A.5)

by introducing the Carter constant \(\mathcal {Q}\).

Then since

$$\begin{aligned} \frac{{\text{d}}S_{r}}{{\text{d}}r}&\equiv p_{r} =\frac{\partial \mathscr {L}}{\partial \dot{r}} =\frac{\Sigma }{\Delta }\dot{r},\\ \frac{{\text{d}}S_{\theta }}{{\text{d}}\theta }&\equiv p_{\theta } =\frac{\partial \mathscr {L}}{\partial \dot{\theta }} =\Sigma \dot{\theta }, \end{aligned}$$
(A.6)

where

$$\begin{aligned} \mathscr {L} = \frac{1}{2}g_{\mu \nu }\dot{x}^{\mu }\dot{x}^{\nu } \end{aligned}$$
(A.7)

is the Lagrangian of KNTN space-time satisfying

$$\begin{aligned} S = \int \mathscr {L} d\tau , \end{aligned}$$
(A.8)

the r and \(\theta\) components of geodesic equations turn out to be

$$\begin{aligned} \Sigma \dot{r}&= \pm \sqrt{R(r)}\\ \Sigma \dot{\theta }&= \pm \sqrt{\Theta (\theta )}, \end{aligned}$$
(A.9)

where

$$\begin{aligned} R( r)&=-\Delta \left( \mathcal {Q} +( L_{z} -a E)^{2}\right) +\left( a L_{z} -E \left( r^{2} +l^{2} +a^{2}\right) \right) ^{2},\\ \Theta ( \theta )&=\mathcal {Q} +( L_{z} -a E)^{2} -\frac{1}{\sin ^{2} \theta }\left( - E (a\sin ^{2} \theta -2l\cos \theta )+ L_{z} \right) ^{2}. \end{aligned}$$
(A.10)

In the following part we will take \(E=1\), \(\displaystyle \lambda = \frac{L_{z}}{E}=L_{z}\) and \(\displaystyle \eta = \frac{\mathcal {Q}}{E^2}=\mathcal {Q}\) for simplicity.

However, the above procedure of variable separation does not apply to the geodesics with \(\displaystyle \theta \equiv \frac{\pi }{2}\), i.e., those lying in the orbital plane. Instead, by inserting the assumption

$$\begin{aligned} S = -E t + L_{z} \phi + S_{r}(r) \end{aligned}$$
(A.11)

into

$$\begin{aligned} 2 \frac{\partial S}{\partial \tau }&=-\frac{\Sigma }{\Delta }\left( (1+\frac{a p}{\Sigma }) \frac{\partial S}{\partial t} +\frac{a}{\Sigma }\frac{\partial S}{\partial \phi }\right) ^2 +\Sigma \left( \frac{p}{\Sigma }\frac{\partial S}{\partial t} +\frac{1}{\Sigma }\frac{\partial S}{\partial \phi }\right) ^2 +\frac{\Delta }{\Sigma }\left( \frac{\partial S}{\partial r}\right) ^2, \end{aligned}$$
(A.12)

we derive

$$\begin{aligned} \frac{1}{\Delta }\left( -E(\Sigma +a p)+a L_{z}\right) ^2 -(-E p + L_{z})^2 -\Delta \left( \frac{{\text{d}}S_{r}}{{\text{d}}r}\right) ^2 =0, \end{aligned}$$
(A.13)

which is the r component of geodesic equations. Note that (A.5) and (A.6) still hold in this case as long as we set \(\mathcal {Q}=0\) and \(S_{\theta }\) being any constant. Therefore the general geodesic equations (A.9) are not violated, with \(\eta = 0\) and \(\Theta \equiv 0\).

The remaining two equations are transformed from (A.3):

$$\begin{aligned} \dot{t}&=\frac{1}{\Sigma \Delta }\left( r^{2} +a^{2} +l^{2}\right) \left( r^{2} +a^{2} +l^{2} -a\lambda \right) \\&\quad +\frac{1}{\Sigma \sin ^{2} \theta }\left( a\sin ^{2} \theta -2l\cos \theta \right) \left( \lambda -a\sin ^{2} \theta +2l\cos \theta \right) ,\\ \dot{\phi }&=\frac{a}{\Sigma \Delta }\left( r^{2} +a^{2} +l^{2} -a\lambda \right) +\frac{1}{\Sigma \sin ^{2} \theta }\left( \lambda -a\sin ^{2} \theta +2l\cos \theta \right) . \end{aligned}$$
(A.14)

In the following we will provide some details in the treatment of the spatial geodesic equations in the integral form. In order to evaluate the integral

$$\begin{aligned} \int _{r_{\min }}^{\infty }\frac{{\text{d}} r}{\sqrt{R( r)}}, \end{aligned}$$
(A.15)

we utilise the techniques in [54], introducing the new dimensionless variable

$$\begin{aligned} \textbf{x} = \frac{r_{\min }}{r} \end{aligned}$$
(A.16)

such that

$$\begin{aligned}&2\int _{r_{\min }}^{\infty }\frac{{\text{d}} r}{\sqrt{R( r)}}\\&=2\int _{0}^{1}\Big ( r_{\min }^2 +(a^2+2l^2-\lambda ^2-\eta )\textbf{x}^2 +2m\left( \eta +(\lambda -a)^2\right) \textbf{x}^3/r_{\min }\\&\quad +\left( (a^2+l^2-a \lambda )^2+(l^2-a^2-Q^2)(\eta +(\lambda -a)^2)\right) \textbf{x}^4/r_{\min }^2 \Big )^{-1/2}{\text{d}}\textbf{x}\\&=2\int _{0}^{1}\Big ( (a^2+2l^2-\lambda ^2-\eta )(\textbf{x}^2-1) +2m\left( \eta +(\lambda -a)^2\right) (\textbf{x}^3-1)/r_{\min }\\&\quad +\left( (a^2+l^2-a \lambda )^2+(l^2-a^2-Q^2)(\eta +(\lambda -a)^2)\right) (\textbf{x}^4-1)/r_{\min }^2 \Big )^{-1/2}{\text{d}}\textbf{x}\\&=2\int _{0}^{1}(r_{\min }^{(0)})^{-1} (1-\textbf{x}^2)^{-1/2} \Bigg ( 1-\tilde{a}^2-2\tilde{l}^2 -2\tilde{m}\big (\tilde{\eta }+ (\tilde{\lambda }-\tilde{a})^2\big ) \frac{r_{\min }^{(0)}}{r_{\min }} \frac{\textbf{x}^2+\textbf{x}+1}{\textbf{x}+1}\\&\quad -\Big ((\tilde{a}^2+\tilde{l}^2-\tilde{a} \tilde{\lambda })^2+(\tilde{l}^2-\tilde{a}^2-\tilde{Q}^2) \big (\tilde{\eta }+(\tilde{\lambda }-\tilde{a})^2\big )\Big ) \Big (\frac{r_{\min }^{(0)}}{r_{\min }}\Big )^2 (\textbf{x}^2+1) \Bigg )^{-1/2}{\text{d}}\textbf{x}. \end{aligned}$$
(A.17)

After Taylor expansion of the integrand up to the third order of \(\tilde{a}\), \(\tilde{m}\), \(\tilde{Q}\) and \(\tilde{l}\), the resulting function can be directly integrated over \(\textbf{x}\) as in [54], such that we have

$$\begin{aligned} \int ^{r}\frac{\mathrm {| d} r\mathrm {| }}{\sqrt{R( r)}}&= r{_{\min }^{( 0)}}^{-1} \Big ( \pi +4\tilde{m}+32\tilde{m}\tilde{l}^{2} -16\tilde{m}\tilde{Q}^{2} -8\tilde{m}\tilde{a}\tilde{\lambda } +4\tilde{m}\tilde{a}^{2}( 4\tilde{\lambda }^{2} -1)\\&\quad +\frac{7}{4}\pi \tilde{l}^{2} -\frac{3}{4} \pi \tilde{Q}^{2} -3\pi \tilde{a}\tilde{l}^{2}\tilde{\lambda } +\frac{3}{2}\pi \tilde{a}\tilde{Q}^{2}\tilde{\lambda } -\frac{1}{4}\pi \tilde{a}^{2} +\frac{3}{4}\pi \tilde{\lambda }^{2}\tilde{a}^{2}\\&\quad +\frac{128}{3}\tilde{m}^{3} +\frac{15}{4} \pi \tilde{m}^{2} -15\pi \tilde{m}^{2}\tilde{a}\tilde{\lambda }\Big ), \end{aligned}$$
(A.18)

and the other integral involving r can be treated in the same manner.

For the integration involving \(\theta\), we have derived

$$\begin{aligned} \int ^{\theta }\frac{|\mathrm {d\theta } |}{\sqrt{\Theta ( \theta )}} =\left( \int _{0}^{\sigma _{{\rm s}}} +\int _{0}^{\sigma_{{\rm o}}}\right) H(\sigma ) {\text{d}}\sigma , \end{aligned}$$
(A.19)

where

$$\begin{aligned} H(\sigma )&= {r_{\min }^{(0)}}^{-1} \left( 1-\frac{2\tilde{\lambda }\tilde{\eta }^{-1/2}}{\cos \sigma +1}\tilde{l} +2\tilde{\eta }^{-1/2}\big (\frac{\tilde{\lambda }^{2}}{\cos \sigma +1} -\tilde{\eta }\cos \sigma \big )\tilde{a}\tilde{l}\right. \\&\quad \left. +\frac{1}{2}(\tilde{\lambda }^{2} -\tilde{\eta }\cos ^{2} \sigma )\tilde{a}^{2} -\frac{2\big ( 1-\tilde{\lambda }^{2}\tilde{\eta }^{-1} +2( 1+\tilde{\lambda }^{2}\tilde{\eta }^{-1})\cos \sigma +\cos ^{2} \sigma \big )}{(\cos \sigma +1)^{2}}\tilde{l}^{2}\right. \\&\quad \left. +\frac{\tilde{\lambda }\tilde{\eta }^{-1/2}\big ( 2(\tilde{\eta } -\tilde{\lambda }^{2}) +\tilde{\eta }\cos \sigma (5\cos \sigma +\cos 2\sigma +3)\big )}{\cos \sigma +1}\tilde{a}^{2}\tilde{l}\right. \\&\quad \left. +\frac{\tilde{\lambda }\big ( 18-4\tilde{\lambda }^{2}\tilde{\eta }^{-1} +( 27+8\tilde{\lambda }^{2}\tilde{\eta }^{-1})\cos \sigma +10\cos 2\sigma +\cos 3\sigma \big )}{(\cos \sigma +1)^{2}}\tilde{a}\tilde{l}^{2}\right. \\&\quad \left. +\frac{2\tilde{\lambda }\tilde{\eta }^{-1/2}\big ( 6-\tilde{\lambda }^{2}\tilde{\eta }^{-1} +8( 1+\tilde{\lambda }^{2}\tilde{\eta }^{-1})\cos \sigma +( 2-\tilde{\lambda }^{2}\tilde{\eta }^{-1})\cos 2\sigma \big )}{(\cos \sigma +1)^{3}}\tilde{l}^{3} \right) . \end{aligned}$$
(A.20)

After denoting

$$\begin{aligned} J(\sigma ) = \int H(\sigma ) {\text{d}} \sigma , \end{aligned}$$
(A.21)

it leads to

$$\begin{aligned} J(\pi - \sigma_{{\rm o}} )+J(\sigma_{{\rm o}})&= r{_{{\rm min}}^{( 0)}}^{-1} \left( \pi -4\tilde{\lambda }\tilde{\eta }^{-1/2}\csc \sigma_{{\rm o}}\tilde{l} -\frac{1}{4} \pi (\tilde{\eta } -2\tilde{\lambda }^{2})\tilde{a}^{2}\right. \\&\quad \left. +4\tilde{\eta }^{-1/2}(\tilde{\lambda }^{2}\csc \sigma_{{\rm o}} -4\tilde{\eta }\sin \sigma_{{\rm o}})\tilde{a}\tilde{l}\right. \\&\quad \left. -2\tilde{\eta }^{-1}( \pi \tilde{\eta } -4\tilde{\lambda }^{2}\cot ^{2} \sigma_{{\rm o}}\csc \sigma_{{\rm o}})\tilde{l}^{2}\right. \\&\quad \left. +\tilde{\lambda }\tilde{\eta }^{-1/2}\csc \sigma_{{\rm o}}( 9\tilde{\eta } -4\tilde{\lambda }^{2} -3\tilde{\eta }\cos 2\sigma_{{\rm o}})\tilde{a}^{2}\tilde{l}\right. \\&\quad \left. +4\tilde{\lambda }\tilde{\eta }^{-1}\big ( 3\pi \tilde{\eta } +\cot ^{2} \sigma_{{\rm o}}\csc \sigma_{{\rm o}}( -\tilde{\eta } -4\tilde{\lambda }^{2} +\tilde{\eta }\cos 2\sigma_{{\rm o}})\big )\tilde{a}\tilde{l}^{2}\right. \\&\quad \left. +\frac{8}{3}\tilde{\lambda }\tilde{\eta }^{-3/2}\csc \sigma_{{\rm o}}\big ( 6\tilde{\eta } -3\tilde{\lambda }^{2} +\tilde{\lambda }^{2}\csc ^{2} \sigma_{{\rm o}}( 17-12\csc ^{2} \sigma_{{\rm o}})\big )\tilde{l}^{3} \right) ,\\ J'(\pi - \sigma_{{\rm o}})&= r{_{{\rm min}}^{( 0)}}^{-1} \left( 1-\tilde{\lambda }\tilde{\eta }^{-1/2}\csc ^{2}\frac{\sigma_{{\rm o}}}{2}\tilde{l} -\frac{1}{4}(\tilde{\eta } -2\tilde{\lambda }^{2} +\tilde{\eta }\cos 2\sigma_{{\rm o}})\tilde{a}^{2}\right. \\&\quad \left. +\tilde{\eta }^{-1/2}( 2\tilde{\eta }\cos \sigma_{{\rm o}} +\tilde{\lambda }^{2}\csc ^{2}\frac{\sigma_{{\rm o}}}{2})\tilde{a}\tilde{l}\right. \\&\quad \left. +\frac{1}{2}\tilde{\eta }^{-1}\big (\tilde{\lambda }^{2} (2\cos \sigma_{{\rm o}} +1)\csc ^{4}\frac{\sigma_{{\rm o}}}{2} -4\tilde{\eta }\big )\tilde{l}^{2} \right) ,\\ \frac{1}{2}J''(\pi - \sigma_{{\rm o}})&= r{_{{\rm min}}^{( 0)}}^{-1} \Big (-\frac{1}{4}\tilde{\lambda }\tilde{\eta }^{-1/2}\sin \sigma_{{\rm o}}\csc ^{4}\frac{\sigma_{{\rm o}}}{2}\tilde{l}\Big ),\\ \frac{1}{6}J'''(\pi - \sigma_{{\rm o}})&= 0, \end{aligned}$$
(A.22)

where we have kept the terms up to the third order for \(\displaystyle J(\pi - \sigma_{{\rm o}} )+J(\sigma_{{\rm o}})\), second order for \(\displaystyle J'(\pi - \sigma_{{\rm o}})\), first order for \(\displaystyle \frac{1}{2}J''(\pi - \sigma_{{\rm o}})\) and zeroth order for \(\displaystyle \frac{1}{6}J'''(\pi - \sigma_{{\rm o}})\), such that Taylor expansion up to the third order are considered overall in (44).

After the calculation of \(\Delta \sigma\) through (48), the value of \(\Delta \theta\) can be derived through (53), up to the third order of \(\tilde{m}\), \(\tilde{a}\), \(\tilde{Q}\) and \(\tilde{l}\). The result can be expressed in the form

$$\begin{aligned} \Delta \theta&=C_{m}\tilde{m} +C_{a}\tilde{a} +C_{Q}\tilde{Q} +C_{l}\tilde{l} +C_{mm}\tilde{m}^{2} +C_{ma}\tilde{m}\tilde{a} +C_{mQ}\tilde{m}\tilde{Q} +C_{ml}\tilde{m}\tilde{l}\\&\quad +C_{aa}\tilde{a}^{2} +C_{aQ}\tilde{a}\tilde{Q} +C_{al}\tilde{a}\tilde{l} +C_{QQ}\tilde{Q}^{2} +C_{Ql}\tilde{Q}\tilde{l} +C_{ll}\tilde{l}^{2}\\&\quad +C_{mmm}\tilde{m}^{3} +C_{mma}\tilde{m}^{2}\tilde{a} +C_{mmQ}\tilde{m}^{2}\tilde{Q} +C_{mml}\tilde{m}^{2}\tilde{l}\\&\quad +C_{maa}\tilde{m}\tilde{a}^{2} +C_{maQ}\tilde{m}\tilde{a}\tilde{Q} +C_{mal}\tilde{m}\tilde{a}\tilde{l} +C_{mQQ}\tilde{m}\tilde{Q}^{2} +C_{mQl}\tilde{m}\tilde{Q}\tilde{l} +C_{mll}\tilde{m}\tilde{l}^{2}\\&\quad +C_{aaa}\tilde{a}^{3} +C_{aaQ}\tilde{a}^{2}\tilde{Q} +C_{aal}\tilde{a}^{2}\tilde{l} +C_{aQQ}\tilde{a}\tilde{Q}^{2} +C_{aQl}\tilde{a}\tilde{Q}\tilde{l} +C_{all}\tilde{a}\tilde{l}^{2}\\&\quad +C_{QQQ}\tilde{Q}^{3} +C_{QQl}\tilde{Q}^{2}\tilde{l} +C_{Qll}\tilde{Q}\tilde{l}^{2} +C_{lll}\tilde{l}^{2}, \end{aligned}$$
(A.23)

with the following coefficients for the first order:

$$\begin{aligned} C_{m} = 4\csc \theta_{{\rm o}} \mu ,\ C_{l} = 4\tilde{\lambda }\csc \theta_{{\rm o}},\ C_{a} = C_{Q}=0, \end{aligned}$$
(A.24)

the second order:

$$\begin{aligned}&C_{mm} = \frac{15}{4} \pi \csc \theta_{{\rm o}} \mu -8\tilde{\lambda }^{2}\cot \theta_{{\rm o}}\csc ^{2} \theta_{{\rm o}},\ C_{ma} = -8\tilde{\lambda }\csc \theta_{{\rm o}} \mu ,\\&C_{ml} = 8\tilde{\lambda }\cot \theta_{{\rm o}}(1 -2\csc ^{2} \theta_{{\rm o}}\tilde{\lambda }^{2} ) \mu ^{-1},\ C_{al} = 4\sin \theta_{{\rm o}} -8\tilde{\lambda }^{2}\csc \theta_{{\rm o}},\\&C_{QQ} = -\frac{3}{4} \pi \csc \theta_{{\rm o}} \mu ,\ C_{ll} = 8\tilde{\lambda }^{2}\cot \theta_{{\rm o}}\csc ^{2} \theta_{{\rm o}},\\&C_{mQ} = C_{aa} = C_{aQ} = C_{Ql} = 0, \end{aligned}$$
(A.25)

and the third order:

$$\begin{aligned}C_{mmm} & = -\frac{32}{3}\tilde{\lambda }^{2} (\cos 2\theta_{{\rm o}} +2)\csc ^{5} \theta_{{\rm o}} \mu -15\pi \tilde{\lambda }^{2}\cot \theta_{{\rm o}}\csc ^{2} \theta_{{\rm o}} +\frac{128}{3}\csc \theta_{{\rm o}} \mu ,\\ C_{mma} & = \tilde{\lambda }\csc \theta_{{\rm o}}( 32\tilde{\lambda }^{2}\cot \theta_{{\rm o}}\csc \theta_{{\rm o}} -15\pi \mu ),\\ C_{mml} & = 16 \tilde{\lambda }\cos \theta_{{\rm o}}\cot \theta_{{\rm o}} + 96\tilde{\lambda }^{3}\csc \theta_{{\rm o}}\cot ^{4} \theta_{{\rm o}} \mu ^{-2}\\ &\quad -\frac{15}{2}\pi \tilde{\lambda }\csc \theta_{{\rm o}}(\cos \theta_{{\rm o}}-2\tilde{\lambda }^2\cot \theta_{{\rm o}}\csc \theta_{{\rm o}}) \mu ^{-1} \\&\quad +128\tilde{\eta }\tilde{\lambda }\csc \theta_{{\rm o}}\big ( -2\tilde{\lambda }^{2} (\cos 2\theta_{{\rm o}} +2)\csc ^{4} \theta_{{\rm o}} +1\big )\mu ^{-2},\\ C_{maa} & = 2\tilde{\eta }\csc \theta_{{\rm o}}\tilde{\lambda }^{2} \mu ^{-1} +( 11\tilde{\lambda }^{2} -3\tilde{\eta } +\cos 2\theta_{{\rm o}})\csc \theta_{{\rm o}} \mu ,\\ C_{mal} & =\big (\sin 4\theta_{{\rm o}} -2( 7\tilde{\lambda }^{2} +\tilde{\eta })\sin 2\theta_{{\rm o}}\big )\mu ^{-3} +32\cot \theta_{{\rm o}}( 3\tilde{\lambda }^{4} -2\tilde{\lambda }^{6}\csc ^{2} \theta_{{\rm o}}) \mu ^{-3},\\ C_{mQQ} & = ( 3\pi \tilde{\lambda }^{2}\cot \theta_{{\rm o}}\csc \theta_{{\rm o}} -16\mu )\csc \theta_{{\rm o}} ,\\ C_{mll} & = -32\tilde{\lambda }^{4} (\cos 2\theta_{{\rm o}} +2)\csc ^{5} \theta_{{\rm o}} \mu ^{-1} +40\csc \theta_{{\rm o}} \mu -64\csc ^{3} \theta_{{\rm o}}\tilde{\lambda }^{4}\mu ^{-3}\\ &\quad -8( 11\tilde{\lambda }^{2} +8\tilde{\eta })\csc \theta_{{\rm o}}\tilde{\lambda }^{2}\mu ^{-3} +8( 3\tilde{\lambda }^{2} +\tilde{\eta })\sin \theta_{{\rm o}}\mu ^{-3},\\ C_{aal} & = 4\tilde{\lambda }( 2\tilde{\lambda }^{2} -2\tilde{\eta } +\cos 2\theta_{{\rm o}})\csc \theta_{{\rm o}},\\ C_{aQQ} & = \frac{3}{2} \pi \tilde{\lambda }\csc \theta_{{\rm o}} \mu ,\\ C_{all} & = -\tilde{\lambda }\csc \theta_{{\rm o}}( 32\cot \theta_{{\rm o}}\csc \theta_{{\rm o}}\tilde{\lambda }^{2} +15\pi \mu ) ,\\ C_{QQl} & = -\frac{3}{4}\pi \tilde{\lambda }( 4\cot \theta_{{\rm o}}\csc ^{2} \theta_{{\rm o}}\tilde{\lambda }^{4} -6\cot \theta_{{\rm o}}\tilde{\lambda }^{2} +\sin 2\theta_{{\rm o}}) \mu ^{-3},\\ C_{lll} & = -\frac{16}{3}\tilde{\lambda }\big ( 3-2\tilde{\lambda }^{2} (\cos 2\theta_{{\rm o}} +2)\csc ^{4} \theta_{{\rm o}}\big )\csc \theta_{{\rm o}} \\ &\quad +\frac{15}{2} \pi \tilde{\lambda }(\sqrt{\tilde{\eta }} +\cos \theta_{{\rm o}}) \mu ^{-1}\csc \theta_{{\rm o}} +\frac{15}{4} \pi \csc \theta_{{\rm o}} \mu ,\\ C_{mmQ} & = C_{maQ} = C_{mQl} = C_{aaa} = C_{aaQ} = C_{aQl} = C_{QQQ} = C_{Qll} = 0. \end{aligned}$$
(A.26)

Note that in the above expressions we have \(\displaystyle \tilde{\eta }= 1-\tilde{\lambda }^2\) by definition (29). Thus by taking the sum of all these terms, the expression of \(\Delta \theta\) is derived.

In the treatment of the second integral over theta (55), we introduced the primitive function \(P(\sigma )\). The following values are calculated where we kept the terms up to the third order for \(\displaystyle P(\pi - \sigma_{{\rm o}} )+P(\sigma_{{\rm o}})\), second order for \(\displaystyle P'(\pi - \sigma_{{\rm o}})\), first order for \(\displaystyle \frac{1}{2}P''(\pi - \sigma_{{\rm o}})\) and zeroth order for \(\displaystyle \frac{1}{6}P'''(\pi - \sigma_{{\rm o}})\) with respect to the small quantities:

$$\begin{aligned} P(\pi - \sigma_{{\rm o}} )+P(\sigma_{{\rm o}})&=-4\mu ^{-1}\tilde{l} +\frac{1}{2} \pi \tilde{\lambda }\tilde{a}^{2} +4\tilde{\lambda } \mu ^{-1}\tilde{a}\tilde{l}\\&\quad +2\left( \cos ^{2} \theta_{{\rm o}}\tilde{\lambda }^{2} \mu ^{-3} +\left( 2\tilde{\eta } -2\tilde{\lambda }^{2} -\cos ^{2} \theta_{{\rm o}}\right) \mu ^{-1}\right) \tilde{a}^{2}\tilde{l}\\&\quad +4\pi \tilde{a}\tilde{l}^{2} +\frac{8}{3}\left( 2\tilde{\eta } -\cos ^{2} \theta_{{\rm o}}\left( 2+3\sin ^{2} \theta_{{\rm o}}\right) \right) \mu ^{-5}\tilde{l}^{3},\\ P'(\pi - \sigma_{{\rm o}})&=\tilde{\lambda }\csc ^{2} \theta_{{\rm o}} -2\left( \cos \theta_{{\rm o}} +\tilde{\lambda }^{2}\tilde{\eta }^{1/2}\csc ^{2} \theta_{{\rm o}}\right) \mu ^{-2}\tilde{l}\\&\quad +\left( 4\tilde{\eta }^{1/2}\cos \theta_{{\rm o}} +3\cos 2\theta_{{\rm o}} +\left( \tilde{\eta } +7\tilde{\lambda }^{2}\right) -4\tilde{\lambda }^{4}\csc ^{2} \theta_{{\rm o}}\right) \tilde{\lambda } \mu ^{-4}\tilde{l}^{2}\\&\quad +\frac{1}{2}\left( -\tilde{\eta }\csc ^{2} \theta_{{\rm o}} +1\right) \tilde{\lambda }\tilde{a}^{2} +2\left( \tilde{\lambda }^{2}\tilde{\eta }^{1/2}\csc ^{2} \theta_{{\rm o}} +\cos \theta_{{\rm o}}\right) \mu ^{-2}\tilde{\lambda }\tilde{a}\tilde{l},\\ \frac{1}{2}P''(\pi - \sigma_{{\rm o}})&=\tilde{\lambda }\cot \theta_{{\rm o}}\csc ^{3} \theta_{{\rm o}} \mu -\Big ((\cos \theta_{{\rm o}} +\tilde{\eta }^{1/2})^{2} \mu ^{-3} \\&\quad +\cot \theta_{{\rm o}}\csc ^{3} \theta_{{\rm o}}(\cos 2\theta_{{\rm o}} -\tilde{\eta } +3\tilde{\lambda }^{2})\tilde{\eta }^{1/2} \mu ^{-1}\Big )\tilde{l},\\ \frac{1}{6}P'''(\pi - \sigma_{{\rm o}})&=\frac{1}{3}\tilde{\lambda }\csc ^{2} \theta_{{\rm o}}\left( 3\left( \tilde{\eta } +2\tilde{\lambda }^{2}\right) \csc ^{2} \theta_{{\rm o}} -2-4\tilde{\lambda }^{2}\csc ^{4} \theta_{{\rm o}}\right) . \end{aligned}$$
(A.27)

With these coefficients and other quantities already obtained, the value of \(\Delta \phi\) can be determined by plugging in the expression of \(\Delta \sigma\) into (32), and keeping the terms up to the third order of \(\tilde{a}\), \(\tilde{m}\), \(\tilde{Q}\) and \(\tilde{l}\). Finally we arrive at

$$\begin{aligned} \Delta \phi&=F_{m}\tilde{m} +F_{a}\tilde{a} +F_{Q}\tilde{Q} +F_{l}\tilde{l} +F_{mm}\tilde{m}^{2} +F_{ma}\tilde{m}\tilde{a} +F_{mQ}\tilde{m}\tilde{Q} +F_{ml}\tilde{m}\tilde{l}\\&\quad +F_{aa}\tilde{a}^{2} +F_{aQ}\tilde{a}\tilde{Q} +F_{al}\tilde{a}\tilde{l} +F_{QQ}\tilde{Q}^{2} +F_{Ql}\tilde{Q}\tilde{l} +F_{ll}\tilde{l}^{2}\\&\quad +F_{mmm}\tilde{m}^{3} +F_{mma}\tilde{m}^{2}\tilde{a} +F_{mmQ}\tilde{m}^{2}\tilde{Q} +F_{mml}\tilde{m}^{2}\tilde{l}\\&\quad +F_{maa}\tilde{m}\tilde{a}^{2} +F_{maQ}\tilde{m}\tilde{a}\tilde{Q} +F_{mal}\tilde{m}\tilde{a}\tilde{l} +F_{mQQ}\tilde{m}\tilde{Q}^{2} +F_{mQl}\tilde{m}\tilde{Q}\tilde{l} +F_{mll}\tilde{m}\tilde{l}^{2}\\&\quad +F_{aaa}\tilde{a}^{3} +F_{aaQ}\tilde{a}^{2}\tilde{Q} +F_{aal}\tilde{a}^{2}\tilde{l} +F_{aQQ}\tilde{a}\tilde{Q}^{2} +F_{aQl}\tilde{a}\tilde{Q}\tilde{l} +F_{all}\tilde{a}\tilde{l}^{2}\\&\quad +F_{QQQ}\tilde{Q}^{3} +F_{QQl}\tilde{Q}^{2}\tilde{l} +F_{Qll}\tilde{Q}\tilde{l}^{2} +F_{lll}\tilde{l}^{2}, \end{aligned}$$
(A.28)

with the first-order coefficients:

$$\begin{aligned} F_{m} = 4\tilde{\lambda }\csc ^{2} \theta_{{\rm o}} ,\ F_{l} = -4(1 -\csc ^{2} \theta_{{\rm o}}\tilde{\lambda }^{2} ) \mu ^{-1},\ F_{a} = F_{Q} = 0, \end{aligned}$$
(A.29)

the second-order coefficients:

$$\begin{aligned}&F_{mm} = 16\tilde{\lambda }\cot \theta_{{\rm o}}\csc ^{3} \theta_{{\rm o}} \mu +\frac{15}{4} \pi \tilde{\lambda }\csc ^{2} \theta_{{\rm o}},\ F_{ma} = 4-8\tilde{\lambda }^{2}\csc ^{2} \theta_{{\rm o}},\\&F_{ml} = 8\cot \theta_{{\rm o}}\csc \theta_{{\rm o}}( 4\tilde{\lambda }^{2}\csc ^{2} \theta_{{\rm o}} -1 ) ,\ F_{al} = 8\tilde{\lambda }(1 -\csc ^{2} \theta_{{\rm o}}\tilde{\lambda }^{2} ) \mu ^{-1},\\&F_{QQ} = -\frac{3}{4}\pi \tilde{\lambda }\csc ^{2} \theta_{{\rm o}},\ F_{ll} = -8\tilde{\lambda }\big (\cot \theta_{{\rm o}}\csc \theta_{{\rm o}}( 2\tilde{\lambda }^{2}\csc ^{2} \theta_{{\rm o}} -3)\tilde{\lambda }^{2} +\cos \theta_{{\rm o}}\big ) \mu ^{-3},\\&F_{mQ} = F_{aa} = F_{aQ} = F_{Ql} = 0, \end{aligned}$$
(A.30)

and the third-order coefficients:

$$\begin{aligned} F_{mmm} & = 30\pi \tilde{\lambda }\csc ^{3} \theta_{{\rm o}}\cot \theta_{{\rm o}} \mu -\frac{256}{3}\tilde{\lambda }^{3}\csc ^{6} \theta_{{\rm o}} +64\tilde{\lambda }( 2\tilde{\lambda }^{2} +\tilde{\eta })\csc ^{4}\theta_{{\rm o}}, \\ F_{mma} & = 5\pi -64\tilde{\lambda }^{2}\cot \theta_{{\rm o}}\csc ^{3} \theta_{{\rm o}} \mu -15\pi \tilde{\lambda }^{2}\csc ^{2} \theta_{{\rm o}}, \\ F_{mml} & = 30\pi \tilde{\lambda }^{2}\cot \theta_{{\rm o}}\csc ^{3} \theta_{{\rm o}} -\frac{15}{2} \pi \cot \theta_{{\rm o}}\csc \theta_{{\rm o}} +16\big ( -16\tilde{\lambda }^{4}\csc ^{6} \theta_{{\rm o}} \\&\quad +4\tilde{\lambda }^{2}( 7\tilde{\lambda }^{2} +4\tilde{\eta })\csc ^{4} \theta_{{\rm o}} -( 13\tilde{\lambda }^{2} +2\tilde{\eta })\csc ^{2} \theta_{{\rm o}} +1\big ) \mu ^{-1},\\ F_{maa} & = -4\tilde{\lambda }\big ( (\tilde{\eta } -3\tilde{\lambda }^{2})\csc ^{2} \theta_{{\rm o}} +2\big ),\\ F_{mal} & = 16\tilde{\lambda }\cot \theta_{{\rm o}}\csc \theta_{{\rm o}}( 3-8\tilde{\lambda }^{2}\csc ^{2} \theta_{{\rm o}}),\\ F_{mQQ} & = - 6\pi \tilde{\lambda }\cot \theta_{{\rm o}}\csc ^{3} \theta_{{\rm o}} \mu -16\tilde{\lambda }\csc ^{2} \theta_{{\rm o}},\\ F_{mll} & = 8 \tilde{\lambda }\csc ^{6} \theta_{{\rm o}}( 12\cos 2\theta_{{\rm o}}\tilde{\lambda }^{2} +19\tilde{\lambda }^{2} -\tilde{\eta } +\cos 4\theta_{{\rm o}}),\\ F_{aal} & = \big ( -4\tilde{\lambda }^{2}(\tilde{\eta } -3\tilde{\lambda }^{2})\csc ^{2} \theta_{{\rm o}} -( 13\tilde{\lambda }^{2} -3\tilde{\eta } +\cos 2\theta_{{\rm o}})\big ) \mu ^{-1} ,\\ F_{aQQ} & = \frac{3}{2} \pi \tilde{\lambda }^{2}\csc ^{2} \theta_{{\rm o}} -\frac{\pi }{2},\\ F_{all} & = 5\pi -15\pi \tilde{\lambda }^{2}\csc ^{2} \theta_{{\rm o}} -8( 8\cot \theta_{{\rm o}}\csc ^{3} \theta_{{\rm o}}\tilde{\lambda }^{4} -6\cot \theta_{{\rm o}}\csc \theta_{{\rm o}}\tilde{\lambda }^{2} +\cos \theta_{{\rm o}}) \mu ^{-1},\\ F_{QQl} & = \frac{3}{2} \pi \cot \theta_{{\rm o}}\csc \theta_{{\rm o}} -6\pi \tilde{\lambda }^{2}\cot \theta_{{\rm o}}\csc ^{3} \theta_{{\rm o}}, \\ F_{lll} & = \frac{15}{4} \pi \csc ^{2} \theta_{{\rm o}}\tilde{\lambda } +\frac{15}{2} \pi (\cos \theta_{{\rm o}} +\sqrt{\tilde{\eta }})\csc ^{2} \theta_{{\rm o}}\tilde{\lambda }^{2} \mu ^{-2} \\ & \quad +\frac{64}{3}\csc ^{2} \theta_{{\rm o}}\big ( -4\tilde{\lambda }^{2}\csc ^{4} \theta_{{\rm o}} +3( 2\tilde{\lambda }^{2} +\tilde{\eta })\csc ^{2} \theta_{{\rm o}}-2\Big )\tilde{\lambda }^{4} \mu ^{-3} \\ &\quad +\frac{1}{3}\big ( 16\csc ^{2} \theta_{{\rm o}} ( -12\csc ^{2} \theta_{{\rm o}}\tilde{\lambda }^{2} +25\tilde{\lambda }^{2} +18\tilde{\eta })\tilde{\lambda }^{4}\\ &\quad +( -207\tilde{\lambda }^{4} -90\tilde{\eta }\tilde{\lambda }^{2} +5\tilde{\eta }^{2}) -4( 2\tilde{\eta } -\tilde{\lambda }^{2})\cos 2\theta_{{\rm o}} +3\cos 4\theta_{{\rm o}}\big ) \mu ^{-5},\\ F_{mmQ} & = F_{maQ} = F_{mQl} = F_{aaa} = F_{aaQ} = F_{aQl} = F_{QQQ} = 0. \end{aligned}$$
(A.31)

Therefore, we have deduced the expressions of \(\Delta \theta\) and \(\Delta \phi\) using the geodesic equations. By inserting these expressions back into (26) and (28), we find that \(X-x\) is a third order small quantity with respect to \(\tilde{m}\), \(\tilde{a}\), \(\tilde{Q}\) and \(\tilde{l}\). Thus by (30), \(X-x\) is equal to the Faraday rotation angle \(\chi\) up to the third order.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H. Gravitational Faraday rotation of light propagation in the Kerr–Newman–Taub–NUT space-time. Eur. Phys. J. Plus 139, 328 (2024). https://doi.org/10.1140/epjp/s13360-024-05139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05139-6

Navigation