Skip to main content
Log in

Synthesis of CO2-philic/hydrophilic surfactant with brush structure and its application in preparing monolithic materials

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A new strategy was developed to build a CO2-philic/hydrophilic surfactant by combining the common free radical polymerization and the grafting modification technology, and a brush polymer was synthesized with poly(vinyl acetate)(PVAc) based copolymer as the CO2-philic group (as the main chain) and the methoxy poly(ethylene glycol) (mPEG) as the hydrophilic part (as the branched chain) (PVAc-g-mPEG). The CO2-philic ability can be controlled by adjusting the chain length of the CO2-philic fragment. The results indicate that PVAc-g-mPEG has excellent surfactant activity, and can emulsify the CO2/H2O system to obtain the CO2-in-water (C/W) high interval phase emulsion (HIPE 80%, v/v), which can remain stable for more than 20 h. If using the monomers/crosslinking agent solution instead of water, the highly porous monolithic materials will be obtained after the continuous phase is polymerized. In this paper, polyacrylamide (PAM) and poly(acrylamide/diethyl aminoethyl methacrylate) (PADM)-based porous monolithic materials were prepared. These materials were used to remove bovine serum albumin (BSA, as the model matter) from the solution, and the results indicated that PAM-based porous monolithic materials had almost no enrichment capacity for protein, while PADM-based porous monolithic materials can adsorb BSA up to 129.3 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Yadav N, Seidi F, Crespy D, D’Elia V (2019) Polymers based on cyclic carbonates as Trait d’Union between Polymer Chemistry and sustainable CO2 utilization. Chemsuschem 12(4):724–754

    Article  CAS  PubMed  Google Scholar 

  2. Chen C, Gnanou Y, Feng X (2023) Ultra-productive Upcycling CO2 into polycarbonate polyols via borinane-based Bifunctional Organocatalysts. Macromolecules 56:892–898

    Article  CAS  Google Scholar 

  3. Fan CG, Lu SJ, Ge QY, Lin SH, Pan QM (2022) Controllable synthesis of CO2-based poly(carbonate-ether)diols catalyzed by salen-cobalt complex. J Polym Sci 60(17):2553–2561

    Article  CAS  Google Scholar 

  4. Qiang W, Zhao L, Liu T, Liu Z, Gao XL, Hu DD (2020) Systematic study of alcohols based co-blowing agents for polystyrene foaming in supercritical CO2: toward the high efficiency of foaming process and foam structure optimization. J Supercrit Fluid 158:104718

    Article  CAS  Google Scholar 

  5. Sekharan TR, Chandira RM, Tamilvanan SR, Rajesh SC, Venkateswarlu BS (2022) Deep Eutectic solvents as an alternate to other harmful solvents. Biointerface Res Appl Chem 12(1):847–860

    CAS  Google Scholar 

  6. Kortsen K, Fowler HR, Jacob PL, Krumins E, Lentz JC, Souhil MRA, Taresco V, Howdle SM (2022) Exploiting the tuneable density of scCO2 to improve particle size control for dispersion polymerisations in the presence of poly(dimethyl siloxane) stabilisers. Eur Polym J 168:111108

    Article  CAS  Google Scholar 

  7. Santos TMM, Chaves BB, Cerqueira JS, Canario MM, Bresolin D, Pinto JC, Machado RAF, Cabral-Albuquerque ECM, Vieira de Melo SAB (2020) Dispersion polymerization of methyl methacrylate in supercritical CO2: a preliminary evaluation of in situ incorporation of Copaiba Oil. Ind Eng Chem Res 59(20):9398–9407

    Article  CAS  Google Scholar 

  8. Haddleton AJ, Bennett TM, Chen XY, Atkinson RL, Taresco V, Howdle SM (2020) Synthesis of two-phase polymer particles in supercritical carbon dioxide. Polym Chem 11(31):5029–5039

    Article  CAS  Google Scholar 

  9. Lv W, Dong MZ, Sarma H, Li YJ, Li Z, Sun JT, Gong HJ (2023) Effects of CO2-philic nonionic polyether surfactants on miscibility behaviors of CO2-hydrocarbon systems: experimental and simulation approach. Chem Eng J 464:2701

    Article  Google Scholar 

  10. Sarbu T, Styranec T, Beckman EJ, Beckman (2000) Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures. Nature 405(6783):165–168

    Article  CAS  PubMed  Google Scholar 

  11. O’Neill ML, Cao Q, Fang M, Johnston KP, Wilkinson SP, Smith CD, Kerschner JL, Jureller SH (1998) Solubility of Homopolymers and copolymers in Carbon Dioxide. Ind Eng Chem Res 37(8):3067–3079

    Article  Google Scholar 

  12. Shen Z, McHugh MA, Xu J, Belardi J, Kilic S, Mesiano A, Bane C, Karnikas, Beckman E, Enick R (2003) CO2-solubility of oligomers and polymers that contain the carbonyl group. Polymer 44(5):1491–1498

    Article  CAS  Google Scholar 

  13. Hu DD, Sun SJ, Yuan PQ, Zhao L, Liu T (2015) Exploration of CO2-Philicity of poly(vinyl acetate-co-alkyl vinyl ether) through molecular modeling and dissolution behavior measurement. J Phys Chem B 119(35):3194–3204

    Article  CAS  PubMed  Google Scholar 

  14. Wen LL, Wang W, Fang SY, Bao L, Hu DD, Zong Y, Zhao L, Liu T (2018) Stabilization of CO2-in-water emulsions with high internal phase volume using PVAc-b-PVP and PVP-b-PVAc-b-PVP as emulsifying agents. J Appli Polym Sci 135(23):46351

    Article  Google Scholar 

  15. Hill C, Umetsu Y, Fujita K, Endo T, Sato K, Yoshizawa A, Rogers SE, Eastoe J, Sagisaka M (2020) Design of surfactant tails for effective surface tension reduction and micellization in water and/or supercritical CO2. Langmuir 36(48):14829–14840

    Article  CAS  PubMed  Google Scholar 

  16. Zhang SC, Luo W, Yan W, Tan B (2014) Synthesis of a CO2-philic poly(vinyl acetate)-based cationic amphiphilic surfactant by RAFT/ATRP and its application in preparing monolithic materials. Green Chem 16(9):4408–4416

    Article  CAS  Google Scholar 

  17. Tan B, Lee J-Y, Cooper AI (2006) Ionic hydrocarbon surfactants for emulsification and dispersion polymerization in supercritical CO2. Macromolecules 39(22):7471–7473

    Article  CAS  Google Scholar 

  18. Ren HR, Xu QQ, Yin JZ (2021) Microscopic properties and stabilization mechanism of a supercritical carbon dioxide microemulsion with extremely high water content. J Colloid Inter Sci 607:1953–1962

    Article  Google Scholar 

  19. Tan B, Cooper AI (2005) Functional oligo (vinyl acetate) CO2-philes for solubilization and emulsification. J Am Chem Soc 127:8938–8939

    Article  CAS  PubMed  Google Scholar 

  20. Birkin NA, Wildig OJ, Howdle SM (2013) Effects of poly(vinyl pivalate)-based stabiliser architecture on CO2-solubility and stabilising ability in dispersion polymerisation of N-vinyl pyrrolidone. Polym Chem 4(13):3791–3799

    Article  CAS  Google Scholar 

  21. Lee H, Terry E, Zong M, Arrowsmith N, Perrier S, Thurecht KJ, Howdle SM (2008) Successful dispersion polymerization in supercritical CO2 using polyvinylalkylate hydrocarbon surfactants synthesized and anchored via RAFT. J Am Chem Soc 130(37):12242–12243

    Article  CAS  PubMed  Google Scholar 

  22. Birkin NA, Arrowsmith NJ, Park EJ, Richez AP, Howdle SM (2011) Synthesis and application of new CO2-soluble vinyl pivalate hydrocarbon stabilisers via RAFT polymerization. Polym Chem 2(6):1293–1299

    Article  CAS  Google Scholar 

  23. Luo W, Zhang S-C, Li P, Xu R, Zhang YX, Liang LY, Wood CD, Lu Q-W, Tan B (2015) Surfactant-free CO2-in-water emulsion-templated poly (vinyl alcohol) (PVA) hydrogels. Polymer 61:183–191

    Article  CAS  Google Scholar 

  24. Speetjens FWII, Mahanthappa MK (2015) Synthesis and Rheological characterization of poly(vinyl acetate-b-vinyl alcohol-b-vinyl acetate) triblock copolymer hydrogels. Macromolecules 48(15):5412–5422

    Article  CAS  Google Scholar 

  25. Lynd NA, Ferrier RC, Beckingham BS (2019) Recommendation for accurate experimental determination of reactivity ratios in chain copolymerization. Macromolecules 52(6): 2277–2285

  26. Tripodo G, Calleri E, di Franco C, Torre ML, Memo M, Mandracchia D (2020) Inverse poly-high Internal Phase emulsions Poly(HIPEs) materials from natural and biocompatible polysaccharides. Materials 13(23):5499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma C, Wang J-D, Cao L-Q (2020) Preparation of macroporous hybrid monoliths via iron-based MOFs-stabilized CO2-in-water HIPEs and use for β-amylase immobilization. Polym Adv Technol 31:2967–2979

    Article  CAS  Google Scholar 

  28. Butler R, Hopkinson I, Cooper AI (2003) Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. J Am Chem Soc 125(47):14473–14481

    Article  CAS  PubMed  Google Scholar 

  29. Yang Z, Cao L-Q, Lin J-L, Li J, Wang J-D (2018) Facile synthesis of Cu-BDC/Poly(N-methylol acrylamide) HIPE monoliths via CO2-in-water emulsion stabilized by metal-organic framework. Polym Polym 153:17–23

    CAS  Google Scholar 

  30. Zhang B-X, Zhang J-L, Liu C-C, Peng L, Sang X-X, Han Bu X, Ma X, Luo T, Tan X-N, Yang G-Y (2016) High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels. Sci Rep 6:21401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cédric C, Favrelle A, Léonard AF, Boury F, Jérôme C, Debuigne A (2013) Macroporous poly(ionic liquid) and poly(acrylamide) monoliths from CO2-in-water emulsion templates stabilized by sugar-based surfactants. J Mater Chem A 1(29):8479–8487

    Article  Google Scholar 

  32. Dong Y, Cao L-Q, Wu YY-X, Wang X-J (2020) TiO2/P(AM-co-AMPS) monolith prepared by CO2-in-water HIPEs and its potential application in wastewater treatment. React Funct Polym 152:104604

    Article  CAS  Google Scholar 

  33. Liu H-R, Wang S-Y, Wang X-Q, Feng X-J, Chen S-X (2022) A stable solid amine adsorbent with interconnected open-cell structure for rapid CO2 adsorption and CO2/CH4 separation. Energy 258:124899

    Article  CAS  Google Scholar 

  34. Imran R, Al Rashid A, Koç M (2023) Material extrusion 3D Printing (ME3DP) process simulations of polymeric porous scaffolds for bone tissue Engineering. Materials 16(6):2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vuuren RDJV, Naficy S, Ramezani M, Cunningham M, Jessop P (2023) CO2-responsive gels. Chem Soc Rev 52(10):3470–3542

    Article  Google Scholar 

  36. Pinaud J, Kowal E, Cunningham M, Jessup P (2012) 2-(Diethyl)aminoethyl methacrylate as a CO2-Switchable comonomer for the Preparation of readily coagulated and redispersed polymer latexes. ACS Macro Lett 1(9):1103–1107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Scientific Research Projects of Ningxia Colleges and Universities (NGY2020061), the Ningxia Natural Science Foundation (2023AAC03282), and the National Natural Science Foundation of China (21564001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoucun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that can affect the objectivity and transparency of the research work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Bian, Y. & Yang, C. Synthesis of CO2-philic/hydrophilic surfactant with brush structure and its application in preparing monolithic materials. J Polym Res 31, 126 (2024). https://doi.org/10.1007/s10965-024-03970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03970-0

Keywords

Navigation