Skip to main content
Log in

The Influence of the Synthetic Polycation Poly-2-Dimethylaminoethyl Methacrylate on the Biological Activity of Resident and Nonresident Cells of Mammals

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Cationic polymers are positively charged high-molecular compounds that have N-containing functional groups, such as primary, secondary, and tertiary amine groups, quaternary ammonium groups, etc. In this work, we studied the effect of the synthetic polycation poly-2-dimethylaminoethyl methacrylate (PDMAEM) on the biological activity of Chinese hamster fibroblasts and human erythrocytes. Analysis of the effect of the polycation on cell adhesion was carried out using a fibroblast culture. Culture plastic, treated or untreated with polycation, was used as a substrate. Adsorption of the polycation on the polystyrene surface did not lead to a change in the adhesive ability of fibroblasts. Pretreatment of fibroblasts with PDMAEM in low concentrations (0.1 and 1 μg/mL) did not affect the adhesive properties of cells seeded on untreated plastic. At concentrations of 10 and 100 μg/mL, PDMAEM inhibited the attachment of fibroblasts to this substrate. A relationship has been determined between the suppression of cell adhesion under the influence of the polymer and its toxic effect on the viability of fibroblasts. Treatment of human erythrocytes with the polycation at concentrations of 10 and 100 μg/mL resulted in cell damage and release of hemoglobin from erythrocytes. At low doses, the polycation had practically no effect on the processes of hemolysis of erythrocytes. It was shown that PDMAEM caused morphological changes in erythrocytes and their aggregation. The toxic effect of the polycation on human erythrocytes generally coincided with that for animal fibroblasts. Possible cellular targets that may be affected by the studied polycation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Bačáková, L., Filová, E., Rypáček, F., Śvorčik, V., and Starý, V., Cell adhesion on artificial materials for tissue engineering, Physiol. Rev., 2004, vol. 53, p. 35.

    Google Scholar 

  2. Boronikhina, T.V., Lomanovskaya, T.A., and Yatskovskii, A.N., Erythrocyte plasmalemma and its changes during the cell lifespan, Zh. Anat. Gistopatol., 2021, vol. 10. no. 2, p. 62.

    Google Scholar 

  3. Borovskaya, M.K., Kuznetsova, E.E., Gorokhova, V.G., Koriakina, L.B., Kurilskaya, T.E., and Pivovarov, Ju.I., Structural and functional characteristics of membrane’s erythrocyte and its change at pathologies of various genesis, Byull. Vost.-Sib. Nauchn. Tsentra Sib. Otd. Ross. Akad. Med. Nauk, 2010, no. 3, p. 334.

  4. Boura, C., Muller, S., Vautier, D., Dumas, D., Schaal, P., Voegel, J.C., Stoltz, J.F., and Menu, P., Endothelial cell-interactions with polyelectrolyte multilayer films, Biomaterials, 2005, vol. 26, p. 4568.

    Article  CAS  PubMed  Google Scholar 

  5. Cerda-Cristerna, B.I., Flores, H., Pozos-Guillén, A., Pérez, E., Sevrin, C., and Grandfils, C., Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers, J. Controlled Release, 2011, vol. 153, p. 269.

    Article  CAS  Google Scholar 

  6. Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J., and Kissel, T., In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis, Biomaterials, 2003, vol. 24, p. 1121.

    Article  CAS  PubMed  Google Scholar 

  7. Flebus, L., Lombart, F., Sevrin, C., Defraigne, J.O., Peters, P., Parhamifar, L., Molin, D.G.M., and Grandfils C., Low molecular weight (2-dimethylamino ethylmethacrylate) polymers with controlled positioned fluorescent labeling: Synthesis, characterization and in vitro interaction with human endothelial cells, Int. J. Pharm., 2015, vol. 478, p. 278.

    Article  CAS  PubMed  Google Scholar 

  8. Franzin, C.M. and Macdonald, P.M., Polylysine-induced 2H NMR-observable domains in phosphatidylserine/phosphatidylcholine lipid bilayers, Biophys. J., 2001, vol. 81, p. 3346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao, S., Holkar, A., and Srivastava, S., Protein-polyelectrolyte complexes and micellar assemblies, Polymers, 2019, vol. 11. 1097. https://doi.org/10.3390/polym11071097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gribova, V., Auzely-Velty, R., and Picart, C., Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering, Chem. Mater., 2012, vol. 24, p. 854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Humphries, I.D., Byron, A., and Humphries, M.J., Integrin ligands at a glance, J. Cell Sci., 2006, vol. 119, p. 3901.

    Article  CAS  PubMed  Google Scholar 

  12. Ivanova, V.P., On the variativity of cellular adhesive response under the influence of related short peptides, Cell Tissue Biol., 2023, vol. 17, no. 3, p. 265.

    Article  CAS  Google Scholar 

  13. Ivanova, V.P., Grinchuk, T.M., Alekseenko, L.L., Artsybasheva, I.V., and Gavrilova, I.I., Effect of synthetic polycation polyallylamine on adhesion and viability of CHL V-79 RJK Chinese hamster fibroblasts with various heat resistance, Cell Tissue Biol., 2010, vol. 4, p. 520.

    Article  Google Scholar 

  14. Ivanova, V.P., Kovaleva, Z.V., Anokhina, V.V., and Krivchenko, A.I., The effect of a collagen tripeptide fragment (GER) on fibroblast adhesion and spreading depends on properties of an adhesive surface, Cell Tissue Biol., 2013, vol. 7, p. 21.

    Article  Google Scholar 

  15. Iwamoto, D.V. and Calderwood, D.A., Regulation of integrin-mediated adhesion, Curr. Opin. Cell Biol., 2015, vol. 36, p. 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacobson, F., Baraniskin, A., Mertens, J., Mittler, D., Mohammadi-Tabrisi, A., Schubert, S., Soltau, M., Lehn-hardt, M., Behnke, B., Gatermann, S., Steinau, H.U., and Steinstraesser, L., Activity of histone H1.2 in infected burn wounds, J. Antimicrob. Chemother., 2005, vol. 55, p. 735.

    Article  Google Scholar 

  17. Keely, S., Rullay, A., Wilson, C., Carmichael, A., Carrington, S., Corfield, A., Haddleton, D.M., and Brayden, D.J., In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly(methacrylate) and N-trimethylated chitosan polymers, Pharm. Res., 2005, vol. 22, p. 38.

    Article  CAS  PubMed  Google Scholar 

  18. Keely, S., Ryan, S., Haddleton, D.M., Limer, A., Murphy, E.P., Colgan, S.P., and Brayden, D.J., Dexamethasone-poly(dimethylamino)ethyl methacrylate (pDMAEMA) conjugates reduce inflammatory biomaterials in human intestinal epithelial monolayers, J. Controlled Release, 2009, vol. 135, p. 35.

    Article  CAS  Google Scholar 

  19. Kreps, E.M., Lipidy kletochnykh membran. Evolyutsiya lipidov mozga. Adaptatsionnaya funktsiya lipidov (Cell Membrane Lipids. Evolution of Brain Lipids. Adaptive Functions of Lipids). Leningrad: Nauka, 1981.

  20. Layman, J.M., Ramirez, S.M., Green, M.D., and Long, T.E., Influence of polycation molecular weight on poly(2-dimethylaminoethyl methacrylate)-mediated DNA delivery in vitro, Biomacromolecules, 2009, vol. 10, p. 1244.

    Article  CAS  PubMed  Google Scholar 

  21. Lelong, I.H., Petegnief, V., and Rebel, G., Neuronal cells mature faster on polyethyleneimine coated plates than on polylysine coated plates, J. Neurosci. Res., 1992, vol. 32, p. 562.

    Article  CAS  PubMed  Google Scholar 

  22. Lutolf, M.P. and Hubbell, J.A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis and tissue engineering, Nat. Biotechnol., 2003, vol. 23, p. 47.

    Article  Google Scholar 

  23. Lv, H., Zhang, S., Wang, B., Cui, S., and Yan, J., Toxicity of cationic lipids and cationic polymers in gene delivery, J. Controlled Release, 2006, vol. 114, p. 100.

    Article  CAS  Google Scholar 

  24. Madaan, K., Kumar, S., Poonia, N., Lather, V., and Pandita, D., Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues, J. Pharm. Bioall. Sci., 2014, vol. 6, p. 139.

    Article  Google Scholar 

  25. Molotkovsky, R.J., Galimzyanov, T.R., and Ermakov, Y.A., Heterogeneity in lateral distribution of polycations at the surface of lipid membranes: from the experimental data to the theoretical model, Materials, 2021, vol. 14. 6623.https://doi.org/10.3390/ma14216623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Monnery, B.D., Wright, M., Cavill, R., Hoogenboom, R., Shaunak, S., Steinke, J.H.G., and Thanou, M., Cytotoxicity of polycations: relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity, Int. J. Pharm., 2017, vol. 521, p. 249.

    Article  CAS  PubMed  Google Scholar 

  27. Moreau, E., Domurado, M., Chapon, P., Vert, M., and Domurado, D., Biocompatibility of polycations: in vitro agglutination and lysis of red blood cells and in vivo toxicity, J. Drug Target, 2002, vol. 10, p. 161.

    Article  CAS  PubMed  Google Scholar 

  28. Moreau, E., Ferrari, I., Drochon, A., Chapon, P., Vert, M., and Domurado, D., Interactions between red blood cells and a lethal, partly quarternized tertiary polyamine, J. Controlled Release, 2000, vol. 64, p. 115.

    Article  CAS  Google Scholar 

  29. Moroz, V.V., Golubev, A.M., Afanasyev, A.V., Kuzovlev, A.N., Sergunova, V.A., Gudkova, O.E., and Chernysh, A.M., The structure and function of a red blood cell in health and critical conditions, Obshch. Reanimatol., 2012, vol. 8, no. 1, p. 52.

    Article  Google Scholar 

  30. Niks, M. and Otto, M., Towards an optimized MTT assay, J. Immunol. Methods, 1990, vol. 130, p. 149.

    Article  CAS  PubMed  Google Scholar 

  31. Oku, N., Yamaguchi, Na, Yamaguchi, No, Shibamoto, S., Tto, F., and Nango, M., The fusogenic effect of synthetic polymers on negatively charged lipid bilayers, J. Biochem., 1986, vol. 100, p. 935.

    Article  CAS  PubMed  Google Scholar 

  32. Phillips, D.J., Harrison, J., Richards, S.J., Mitchell, D.E., Tichauer, E., Hubbard, A.T.M., Guy, C., Portman, I.H., and Fullam, E., Evaluation of the antimicrobial activity of cationic polymers against Mycobacteria: toward antitubercular macromolecules, Biomacromolecules, 2017, vol. 18, p. 1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Putnam, D., Gentry, C.A., Pack, D.W., Langer, R. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA, 2001, vol. 98, p. 1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ravichandran, R., Sundarrajan, S., Venugopal, J.R., Mukherjee, S., and Ramakrishna, S., Advances in polymeric systems for tissue engineering and biochemical applications, Macromol. Biosci., 2012, vol. 12, p. 286.

    Article  CAS  PubMed  Google Scholar 

  35. Rawlinson, L.A., Ryan, S.M., Mantovani, G., Syrett, J.A., Haddleton, D.M., and Brayden, D.J., Antibacterial effects of poly(2-dimethylamino ethyl) methacrylate against selected gram-positive and gram-negative bacteria, Biomacromolecules, 2010, vol. 11, p. 443.

    Article  CAS  PubMed  Google Scholar 

  36. Reuter, M., Schwieger, C., Meister, A., Karlsson, G., and Blume, A., Poly-L-lysines and poly-L-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane, Biophys. Chem., 2009, vol. 144, p. 27.

    Article  CAS  PubMed  Google Scholar 

  37. Rihová, B., Kovár, L., Kovár, M., and Hovorka, O., Cytotoxicity and immunostimulation: double attack on cancer cells with polymeric therapeutics, Trends Biotechnol., 2009, vol. 27, p. 11.

    Article  PubMed  Google Scholar 

  38. Rosa, M.D., Carteni, M., Petillo, O., Calarco, A., Margarucci, S., Rosso, F., Rosa, A.D., Farina, E., Grippo, P., and Peluso, G. Cationic polyelectrolyte hydrogel fosters fibroblast spreading, proliferation and extracellular matrix production: Implication for tissue engineering, J. Cell Physiol., 2004, vol. 198, p. 133.

    Article  PubMed  Google Scholar 

  39. Samal, S.K., Dash, M., van Vlierberghe, S., Kaplan, D.L., Chellini, E., van Blitterswijk, C., Moroni, L., and Dubruel, P., Cationic polymers and their therapeutic potential, Chem. Soc. Rev., 2012, vol. 41, p. 7147.

    Article  CAS  PubMed  Google Scholar 

  40. Santiago L.Y., Nowak R.W., Rubin J.P., Marra K.G. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell application, J. Biomaterials, 2006, vol. 27, p. 2962.

    Article  CAS  Google Scholar 

  41. Scherbak, I.G., Biologicheskaya khimiya (Biological Chemistry), St. Petersburg: St. Peterburg State Med. Univ., 2005.

  42. Schwieger, C. and Blume, A., Interaction of poly-L-arginine with negatively charged DPPG membranes: calorimetric and monolayer studies, Biomacromolecules, 2009, vol. 10, p. 2152.

    Article  CAS  PubMed  Google Scholar 

  43. Soravia, V. and Toca-Herrera, J.L., Substrate influence on cell shape and cell mechanics: Hep G2 cells spread on positively charged surfaces, Microsc. Res. Tech., 2009, vol. 72, p. 957.

    Article  Google Scholar 

  44. Spichkina, O.G., Pinaev, G.P., and Petrov, Y.P., Analysis of heterogeneity of human keratinocytes interacting with immobilized fibronectin and collagenes of types I and IV, Cell Tissue Biol., 2008, vol. 2, p. 123.

    Article  Google Scholar 

  45. Stawski, D., Rolińska, K., Zielińska, D., Sahariah, P., Hjalmarsdóttir, M.A., and Másson, M., Antibacterial properties of poly (NN-dimethylaminoethyl methacrylate) obtained at different initiator concentrations in solution polymerization, R. Soc. Open Sci., 2022, vol. 9. 211367.https://doi.org/10.6084/m9.figshare.c5764223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanasienko, I.V., Yemets, A.I., Finiuk, N.S., Stoiko, R.P., and Blume, Y.B., DMAEM-based cationic polymers as novel carriers for DNA delivery into cells, Cell Biol. Int., 2015, vol. 39, p. 243.

    Article  CAS  PubMed  Google Scholar 

  47. Thompson, M.T., Berg, M.C., Tobias, I.S., Lichter, J.A., Rubner, M.F., and van Vliet, K.J., Biochemical functionalization of polymeric cell substrata can alter mechanical compliance, Biomacromolecules, 2006, vol. 7, p. 1990.

    Article  CAS  PubMed  Google Scholar 

  48. Troshkina, N.A., Tsirkin, V.I., and Dvoryansky, S.A., Erythrocyte: structure and functions of its membrane, Vyatsk. Med. Vestn., 2007, vol. 18, nos. 2–3, p. 32.

    Google Scholar 

  49. Tsai, W.B., Chen, R.P.Y., Wei, K.L., Chen, Y.R., Liao, T.Y., Liu, H.L., and Lai, J.Y., Polyelectrolyte multilayer films functionalized with peptides for promoting osteoblast functions, Acta Biomater., 2009, vol. 5, p. 3467.

    Article  CAS  PubMed  Google Scholar 

  50. Van der Vondele, S., Vörös, J., and Hubbell, J.A., RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion, Biotechnol. Bioeng., 2003, vol. 82, p. 784.

    Article  Google Scholar 

  51. Vancha, A.R., Govindaraju, S., Parsa, K.V.L., Jasti, M., Gonzalez-Garcia, M., and Ballestero, R.P., Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer, BMC Biotechnol., 2004, vol. 4. 23. https://doi.org/10.1186/1472-6750-4-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xie, B., Du, K., Huang, F., Lin, Z., and Wu, L., Cationic nanomaterials for autoimmune diseases therapy, Front. Pharmacol., 2022, vol. 12. 762362.https://doi.org/10.3389/fphar.2021.762362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. You, Y.Z., Manickam, D.S., Zhou, Q.H., and Oupicky, D., Reducible poly (2-dimethylaminoethyl methacrylate): synthesis, cytotoxicity, and gene delivery activity, J. Controlled Release, 2007, vol. 122, p. 217.

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by the Research Program of the Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, no. 075-00967-23-00.

Author information

Authors and Affiliations

Authors

Contributions

V.P. Ivanova: original idea and experimental design, experiments, analysis, and interpretation of the data obtained, writing the manuscript. L.L. Alekseenko: fibroblast cultivation. O.V. Nazarova: chemical synthesis of PDMAEM polycation. I.V. Mindukshev: participation in discussion of the results. All authors read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to V. P. Ivanova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Animal-related experiments were conducted in accordance with the NIH Guidelines for the care and use of laboratory animals (http://oacu.od.nih.gov/regs/index.htm). Animal protocols were approved by the Ethics Committee of the Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, protocol no. 1-04 of April 7, 2022. Each participant in the study provided a voluntary written informed consent after receiving an explanation of the potential risks and benefits, as well as the nature of the upcoming study.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: ECM—extracellular matrix; LDH—lactate dehydrogenase; PDMAEM—poly-2-dimethylaminoethyl methacrylate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, V.P., Alekseenko, L.L., Nazarova, O.V. et al. The Influence of the Synthetic Polycation Poly-2-Dimethylaminoethyl Methacrylate on the Biological Activity of Resident and Nonresident Cells of Mammals. Cell Tiss. Biol. 18, 89–101 (2024). https://doi.org/10.1134/S1990519X24010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X24010024

Keywords:

Navigation