Skip to main content
Log in

The Cytokine Profile of Myocardial Cells with Coronary Heart Disease and Ischemic Cardiomyopathy

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

In this work, a comparative analysis of the myocardial cytokine profile was carried out in patients with coronary heart disease (CHD) and in patients with ischemic cardiomyopathy (ICM) against the background of CHD. The concentrations of 41 cytokines secreted by a 24-h tissue culture of the myocardium, intraoperatively collected from the right atrial (RA) appendage (control) and a peri-infarct zone (PZ) of the left ventricle (LV), were determined by the flow fluorimetry method using a multiplex test system. The aim of the work was to study in vitro the cytokine profile of myocardial cells to search for possible predictors of unfavorable outcomes of the surgical treatment of patients with CHD and ICM. The myocardial secretion of the pro-inflammatory molecules GM-CSF and IFN-γ increased significantly in patients with ICM against the background of CHD (up to 78–80 pg/g, p < 0.05) as compared with zero values in the case of CHD. At the same time, a threefold decrease in the concentration of the Fractalkine 3 ligand (Flt-3L, fms-like tyrosine kinase 3 ligand) was observed. A decrease in the secretion of Flt-3L was noted namely in the PZ–LV as compare with the RA appendage. In addition, the concentrations of fibroblast growth factor-2 (FGF-2), platelet-derived growth factor AB/BB (PDGF-AB/BB), interleukins IL-15 and IL-4, as well as regulated upon activation, normal T cell expressed and secreted (RANTES/CCL5), sharply decreased in the tissue myocardial PZ–LV culture as compared with RA appendage. The detected changes are analyzed using correlation and regression analyses; possible predictors of the risk of surgical treatment of patients from two groups are suggested. Pro-inflammatory cytokines (IL-5, IL-6) and chemokines (Flt-3L, IL-8), as well as factors of angiogenesis (VEGF) and angiostasis (IP-10), are suggested to be considered as potential markers of unfavorable outcome of the surgical treatment of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Bartekova M., Radosinska J., Jelemensky M., Dhalla N.S. Role of cytokines and inflammation in heart function during health and disease, Heart Fail. Rev., 2018, vol. 5, p. 733. https://doi.org/10.1007/s10741-018-9716-x

    Article  CAS  Google Scholar 

  2. Berezin, A.E. and Berezin, A.A., Adverse cardiac remodelling after acute myocardial infarction: old and new biomarkers, Dis. Markers, 2020, vol. 2020, p. 21. https://doi.org/10.1155/2020/1215802

    Article  CAS  Google Scholar 

  3. Boag, S.E., Das, R., Shmeleva, E.V., Bagnall, A., Egred, M., Howard, N., and Spyridopoulos, I., T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients, J. Clin. Invest., 2015, vol. 125, p. 3063.https://doi.org/10.1172/JCI80055

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boren, E. and Gershwin, M.E., Inflamm-aging: autoimmunity, and the immune-risk phenotype, Autoimmun. Rev., 2004, vol. 3, p. 401.

    Article  CAS  PubMed  Google Scholar 

  5. Choi, W., Wolber, R., Gerwat, W., Mann, T., Batzer, J., Smuda, C., Liu, H., Kolbe, L., and Hearing, V.J., The fibroblast-derived paracrine factor neuregulin-1 has a novel role in regulating the constitutive color and melanocyte function in human skin, J. Cell Sci., 2010, vol. 123, p. 3102. https://doi.org/10.1242/jcs.064774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cojan-Minzat, B.O., Zlibut, A., and Agoston-Coldea, L., Non-ischemic dilated cardiomyopathy and cardiac fibrosis, Heart Fail. Rev., 2021, vol. 26, p. 1081. https://doi.org/10.1007/s10741-020-09940-0

    Article  CAS  PubMed  Google Scholar 

  7. Damås, J.K., Boullier, A., Wæhre, T., Smith, C., Sandberg, W.J., Green, S., and Quehenberger, O., Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy, Arterioscler., Thromb., Vasc. Biol., 2005, vol. 25, p. 2567. https://doi.org/10.1161/01.ATV.0000190672.36490.7b

    Article  CAS  PubMed  Google Scholar 

  8. Deshmane, S.L., Kremlev, S., Amini, S., and Sawaya, B.E., Monocyte chemoattractant protein-1 (MCP-1): an overview, J. Interferon Cytokine Res., 2009, vol. 29, p. 313. https://doi.org/10.1089/jir.2008.0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dor, V., Left ventricular aneurysms: the endoventricular circular patch plasty, Semin. Thoracic Cardiovasc. Surg., 1997, vol. 9, p. 123.

    CAS  Google Scholar 

  10. Felker, G.M., Shaw, L.K., and O’Connor, C.M., A standardized definition of ischemic cardiomyopathy for use in clinical research, J. Am. Coll. Cardiol., 2002, vol. 39, p. 210. https://doi.org/10.1016/S0735-1097(01)01738-7

    Article  PubMed  Google Scholar 

  11. Fontes, J.A., Rose, N.R., and Čiháková, D., The varying faces of IL-6: from cardiac protection to cardiac failure, Cytokine, 2015, vol. 74, p. 62. https://doi.org/10.1016/j.cyto.2014.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gol’dberg, E.D, Dygai, A.M., Udut, V.V., Naumov, S.A., and Khlusov, I.A., Zakonomernosti strukturnoi organizatsii sistem zhizneobespecheniya v norme i pri razvitii patologicheskogo protsessa (Patterns of Structural Organization of Life Support Systems in Norm and in Development of Pathological Process), Tomsk, 1996.

  13. Goudswaard, L.J., Do the chemokines MDC and TARC contribute to obesity-related platelet hyperactivity and cardiovascular disease?, 1st Platelet Society Meeting, Abstracts of Papers, Bristol, 2019, p. 133. https://www.tandfonline.com/doi/full/10.1080/09537104.2019.1693140

  14. Gritsenko, O.V., Chumakova, G.A., Shevlyakov, I.V., and Veselovskaya, N.G., Extracellular matrix of the heart and its changes in myocardial fibrosis, Kardiologiya, 2020, vol. 6, no. 6, p. 107. https://doi.org/10.18087/cardio.2020.6.n773

    Article  Google Scholar 

  15. Henein, M.Y., Vancheri, S., Longo, G., and Vancheri, F., The role of inflammation in cardiovascular disease, Int. J. Mol. Sci., 2022, vol. 23, p. 12906. https://doi.org/10.3390/ijms232112906

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hirota, H., Yoshida, K., Kishimoto, T., and Taga, T., Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, p. 4862. https://doi.org/10.1073/pnas.92.11.486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hueso, L., Ortega, R., Selles, F., Wu-Xiong, N.Y., Ortega, J., Civera, M., Ascaso, J.F., Sanz, M.J., Real, J.T., and Piqueras, L., Upregulation of angiostatic chemokines IP-10/CXCL10 and I-TAC/CXCL11 in human obesity and their implication for adipose tissue angiogenesis, Int. J. Obes. (Lond.), 2018, vol. 42, p. 1406. https://doi.org/10.1038/s41366-018-0102-5

    Article  CAS  PubMed  Google Scholar 

  18. Ibáñez, B., Heusch, G., Ovize, M., and Van de Werf, F., Evolving therapies for myocardial ischemia/reperfusion injury, J. Am. College Cardiol., 2015, vol. 65, p. 1454. https://doi.org/10.1016/j.jacc.2015.02.032

    Article  Google Scholar 

  19. Jiang, D. and Rinkevich, Y., Defining skin fibroblastic cell types beyond CD90, Front. Cell Dev. Biol., 2018, vol. 6, p. 133. https://doi.org/10.3389/fcell.2018.00133

    Article  PubMed  PubMed Central  Google Scholar 

  20. Khamitova, K.A., Chepurnaya, A.N., Nikulicheva, V.I., and Safuanova, G.Sh., Content of cytokine inflammatory markers in patients with chronic heart failure caused by cardiomyopathy, Acta Biomed. Sci., 2017, vol. 2, no. 3, p. 48.

    Google Scholar 

  21. Kologrivova, I., Shtatolkina, M., Suslova, T., and Ryabov, V., Cells of the immune system in cardiac remodeling: main players in resolution of inflammation and repair after myocardial infarction, Front. Immunol., 2021, vol. 12, p. 664457. https://doi.org/10.3389/fimmu.2021.664457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Korneva, Yu.S. and Dorosevic,h, A.E., Dynamic of morphological changes in border zone during myocardial infarction organization, Med. Vestn. Sev. Kavk., 2016, vol. 3, no. 3, p. 417. https://doi.org/10.14300/mnnc.2016.11092

    Article  Google Scholar 

  23. Kozhevnikov, M.L., Morphological signs of the likelihood of postoperative left ventricular remodeling in patients with acquired heart defects, Extended Abstract of Cand. Sci. (Med.) Dissertation, Tomsk, 2009.

  24. Maass, D.L., White, J., and Horton, J.W., Nitric oxide donors alter cardiomyocyte cytokine secretion and cardiac function, Crit. Care Med., 2005, vol. 33, p. 2794.

    Article  CAS  PubMed  Google Scholar 

  25. Menicanti, L., The Dor procedure: what has changed after fifteen years of clinical practice?, J. Thorac. Cardiovasc. Surg., 2002, vol. 124, p. 886. https://doi.org/10.1067/mtc.2002.129140

    Article  PubMed  Google Scholar 

  26. Moskalev, A.V., Rudoi, A.S., and Apchel, V.Ya., Chemokines, their receptors and features of development of the immune response, Vestn. Ross. Voenno-Med. Akad., 2017, vol. 2, p. 182.

    Google Scholar 

  27. Murakami, T., Iwagaki, H., and Saito, S., Equivalence of the acute cytokine surge and myocardial injury after coronary artery bypass grafting with and without a novel extracorporeal circulation system, J. Int. Med. Res., 2015, vol. 33, p. 133. https://doi.org/10.1177/147323000503300201

    Article  Google Scholar 

  28. Narasimhalu, K., Ma, L., De Silva, D.A., Wong, M.C., Chang, H.M., and Chen, C., Elevated platelet-derived growth factor AB/BB is associated with a lower risk of recurrent vascular events in stroke patients, Int. J. Stroke, 2015, vol. 10, p. 85. https://doi.org/10.1111/ijs.1235

    Article  PubMed  Google Scholar 

  29. Prabhu, S.D. and Frangogiannis, N.G., The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis, Circ. Res., 2016, vol. 119, p. 91. https://doi.org/10.1161/CIRCRESAHA.116.303577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ridker, P.M., Everett, B.M., Thuren, T., MacFadyen, J.G., Chang, W.H., Ballantyne, C., Fonseca, F., Nicolau, J., Koenig, W., Anker, S., Kastelein, J.P., Cornel Jan, H., Pais, P., Pella, D., Genest, J., et al., Antiinflammatory therapy with canakinumab for atherosclerotic disease, 2017, vol. 377, p. 1119.https://doi.org/10.1056/NEJMoa1707914

  31. Robba, C., Battaglini, D., Pelosi, P., and Rocco, P.R.M., Multiple organ dysfunction in SARS-CoV-2: MODS-CoV‑2, Expert Rev. Respir. Med., 2020, vol. 14, p. 865. https://doi.org/10.1080/17476348.2020.1778470

    Article  CAS  PubMed  Google Scholar 

  32. Shevchenko, A.V., Prokofyev, V.F., Konenkov, V.I., Khapaev, R.S., and Nimaev, V.V., Polymorphism of vascular endothelial growth factor gene (VEGF) and matrix metalloproteinase (MMP) genes in primary limb lymphedema, Med. Immunol., 2020, vol. 22, no. 3, p. 497. https://doi.org/10.15789/1563-0625-POV-1913

    Article  Google Scholar 

  33. Shvangiradze, T.A., Bondarenko, I.Z., Troshina, E.A., Shestakova, M.V., Ilyin, A.V., Nikankina, L.V., Karpukhin, A.V., Muzaffarova, T.A., Kipkeeva, F.M., Grishina, K.A., and Kuzevanova, A.Y., Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes, Obesity Metab., 2016, vol. 13, p. 34. https://doi.org/10.14341/omet2016434-38

    Article  Google Scholar 

  34. Simbirtsev, A.S., Tsitokiny v patogeneze i lechenii zabolevanii cheloveka (Cytokines in Pathogenesis and Treatment of Human Diseases), St. Petersburg: Foliant, 2018.

  35. Sperling, I.D. and Arakelyan, L.A., Number and size of human ventricular cardiomyocytes and number of nuclei in them, Tsitologiya, 1989, vol. 31, no. 4, p. 426.

    Google Scholar 

  36. Spray, L., Park, C., Cormack, S., Mohammed, A., Panahi, P., Boag, S., Bennaceur, K., Sopova, K., Richardson, G., Stangl, V., Rech, L., Rainer, P., Ramos, G., Hofmann, U., Stellos, K., et al., The fractalkine receptor CX3CR1 links lymphocyte kinetics in CMV-seropositive patients and acute myocardial infarction with adverse left ventricular remodeling, Front. Immunol., 2021, vol. 12, p. 605857. https://doi.org/10.1007/s00109-005-0035-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stelmashenko, A.I. and Belyaeva, S.A., Morphological and molecular predictors of left ventricular remodeling in ischemic cardiomyopathy, Morfol. Al’m. im. V.G. Koveshnikova, 2019, vol. 17, no. 4, p. 71.

    Google Scholar 

  38. Stelmashenko, A.I., Belyaeva, S.A., Rakina, M.A., and Andreev, S.L., The role of macrophages in left ventricular remodeling in patients with ischemic cardiomyopathy, Morfol. Al’m. im. V.G. Koveshnikova, 2020, vol. 18, no. 4, p. 61.

    Google Scholar 

  39. Timonen, P., Magga, J., Risteli, J., Punnonen, K., Vanninen, E., Turpeinen, A., Tuomainen, P., Kuusisto, J., Vuolteenaho, O., and Peuhkurinen, K., Cytokines, interstitial collagen and ventricular remodelling in dilated cardiomyopathy, Int. J. Cardiol., 2008, vol. 124, p. 293. https://doi.org/10.1016/j.ijcard.2007.02.004

    Article  PubMed  Google Scholar 

  40. Urazova, O., Chumakova, S., Vins, M., Maynagasheva, E., Shipulin, V., Pryahin, A., Poletika, V., Kononova, T., Kolobovnikova, Y., and Novitskiy, V., Characteristics of humoral regulation of differentiation of bone marrow monocyte subpopulations in patients with ischemic cardiomyopathy, Int. J. Biomed., 2019 vol. 9, p. 91. https://doi.org/10.21103/Article9(2)_OA1

    Article  Google Scholar 

  41. Van den Broek, L.J., Kroeze, K.L., Waaijman, T, Breetveld, M., Sampat-Sardjoepersad, S.C., Niessen, F.B., and Gibbs, S., Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27, Tissue Eng. Part 1, 2014 vol. 20, p. 197. https://doi.org/10.1089/ten.tea.2013.0123

    Article  CAS  Google Scholar 

  42. Van der Heijden, T., Bot, I., and Kuiper, J., The IL-12 cytokine family in cardiovascular diseases, Cytokine, 2019, vol. 122, p. 154. https://doi.org/10.1016/j.cyto.2017.10.010

    Article  CAS  Google Scholar 

  43. Yang, X.C., Liu, Y., Wang, L.F., Cui, L., Wang, T., Ge, Y.G., and Zhao, Z.Q., Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention, J. Invasive Cardiol., 2007, vol. 19, p. 424.

    PubMed  Google Scholar 

  44. Yurova, K.A., Khaziakhmatova, O.G., Malashchenko, V.V., Shunkin, E.O., Todosenko, N.M., Norkin, I.K., Ivanov, P.A., Khlusov, I.A., Melashchenko, E.S., and Litvinova, L.S. Cellular–molecular aspects of inflammation, angiogenesis, and osteogenesis. A short review, Tsitologiya, 2020, vol. 62, no. 5, p. 305.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Siberian State Medical University for partial support within the “Priority 2030 Strategic Academic Leadership Program.”

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-315-90051, “Molecular, Cellular, and Tissue Markers of Unfavorable Outcomes of the Surgical Treatment of Patients with Ischemic Cardiomyopathy.”

Author information

Authors and Affiliations

Authors

Contributions

A.I. Stelmashenko: setting aim and objectives, planning the experiments, analyzing the results, writing the article; I.A. Khlusov: setting aims and objectives, planning the experiments, writing the article; S.L. Andreev, V.M. Shipulin: provision of clinical material; A.I. Stelmashenko, L.S. Litvinova, V.V. Malashchenko, N.D. Todosenko, N.M. Gazatova: setting up the experiments.

Corresponding author

Correspondence to L. S. Litvinova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All studies were conducted in accordance with the principles of biomedical ethics as outlined in the 1964 Declaration of Helsinki and its later amendments. They were also approved by the Ethics Committee of Siberian State Medical University, Tomsk, Russia, protocol No. 7981 dated December 16, 2019. Each participant in the study provided a voluntary written informed consent after receiving an explanation of the potential risks and benefits, as well as the nature of the upcoming study.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Barkhash

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: CHD—coronary heart disease; ICM—ischemic cardiomyopathy; ELIS—enzyme-linked immunosorbent; ESI—end-systolic index; LV—left ventricle; PZ—peri-infarct zone; RA—right atrium; CXCL/CCL—C-X-C chemokine motif/C-C ligand motif; EGF—epidermal growth factor; FGF-2—basic fibroblast growth factor; Flt-3L—fractalkine-3 ligand; Fractalkine—fractalkine; G-CSF—granulocyte colony-stimulating factor; GM-CSF—granulocyte-monocyte colony-stimulating factor; GRO—growth-related oncogene; IFN—interferon; IL—interleukin; IP-10—interferon γ-inducible protein 10; MCP—monocyte chemotactic protein; MDC—macrophage-derived chemokine; MIP—macrophage inflammatory protein; PDGF—platelet-derived growth factor; RANTES/CCL5—regulated upon activation, normal T-cell expressed and secreted; sCD40L—type I transmembrane glycoprotein; TGF-α—transforming growth factor α; TNF—tumor necrosis factor; VEGF—vascular endothelial growth factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stelmashenko, A.I., Andreev, S.L., Litvinova, L.S. et al. The Cytokine Profile of Myocardial Cells with Coronary Heart Disease and Ischemic Cardiomyopathy. Cell Tiss. Biol. 18, 45–57 (2024). https://doi.org/10.1134/S1990519X24010097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X24010097

Keywords:

Navigation