Skip to main content
Log in

A Study of Neurodegenerative Changes in the CA1 Region of the Dorsal Hippocampus in Adult Rats with Prenatal Hyperhomocysteinemia

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The work is devoted to the study of neurodegenerative changes in the ultrastructural organization of hippocampal CA1 in adult rats that have suffered prenatal hyperhomocysteinemia (pHHC). Electron microscopy in the neural networks of the CA1 region of the dorsal hippocampus in adult rats with pHHC, in contrast to control animals, revealed signs of pathological changes: degeneration of pyramidal neurons and destruction of the myelin sheath of axons, as well as destruction of the axial cylinders of basal and apical dendrites directed from a pyramidal layer of neurons in the direction of tractus temporammonic or Schaffer collaterals, respectively. In control animals, on the distal branches of dendrites in the layers of the stratum oriens and stratum radiatum, using the Golgi method, a dense network of varicose dendritic extensions was identified, providing an increase in the area of synaptic contacts. In rats that have undergone pHHC, significant destructive changes are found in these dendritic varicosities: destruction of mitochondrial cristae and the appearance of dilated cisterns. In adult rats with pHHC, it completely eliminates the preference for the smell of valerian, which is normally a physiologically significant stimulus, which indicates a negative effect of pHHC on the functioning of the olfactory analyzer, the activity of which is closely connected with the hippocampus. The obtained facts indicate the detrimental effect of homocysteine on the structure and interneuronal connections in the nervous tissue of the CA1 region of the dorsal hippocampus, as a morphological substrate for the integration of stimuli entering it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Allen, T.A. and Fortin, N.J., The evolution of episodic memory, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, p. 10379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arutyunyan, A.V., Milyutina, Yu.P., Zaloznyaya, I.V., Pustygina, A.V., Kozina, L.S., and Korenevskii, A.V., The use of different experimental models of hyperhomocysteinemia in neurochemical studies, Neurochem. J., 2012, vol. 6, no. 1, p. 71.

    Article  CAS  Google Scholar 

  3. Belekhova, M.G. and Tumanova, N.L., Structural bases of audio-somatic interactions in turtle Emys orbicularis brain. Dendrite exchange between nuclei, Zh. Evol. Biokhim. Fiziol., 1988, vol. 24, p. 326.

    Google Scholar 

  4. Berger, T., Rubner, P., Schautzer, F., Egg, R., Ulmer, H., Mayringer, I., Dilitz, E., Deisenhammer, F., and Reindl, M., Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event, New Engl. J. Med., 2003, vol. 349, p. 139. https://doi.org/10.1056/NEJMoa022328

    Article  CAS  PubMed  Google Scholar 

  5. Bergmann, E., Zur, G., Bershadsky, G., and Kahn, I., The organization of mouse and human corticohippocampal networks estimated by intrinsic functional connectivity, Cereb. Cortex, 2016, vol. 26, pp. 4497–4512. https://doi.org/10.1093/cercor/bhw327

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boryakova, E.E., Gladysheva, O.S., and Krylov, V.N., Age dynamics of olfactory sensitivity in female laboratory mice and rats to the smell of isovaleric acid, Sens. Sist., 2007, vol. 21, p. 341.

    Google Scholar 

  7. Buckner, R.L. and Krienen, F.M., The evolution of distributed association networks in the human brain, Trends Cogn. Sci., 2013, vol. 17, p. 648. https://doi.org/10.1016/j.tics.2013.09.017

    Article  PubMed  Google Scholar 

  8. Dubrovskaya, N.M., Vasilev, D.S., Tumanova, N.L., Alekseeva, O.S., and Nalivaeva, N.N., Prenatal hypoxia impairs olfactory function in postnatal ontogeny in rats, Neurosci. Behav. Physiol., 2022, vol. 52, p. 262. https://doi.org/10.1007/s11055-022-01233-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gass, N., Schwarz, A.J., Sartorius, A., Schenker, E., Risterucci, C., Spedding, M., Zheng, L., Meyer-Lindenberg, A., and Weber-Fahr, W., Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat, Neuropsychopharmacology, 2014, vol. 39, p. 895.

    Article  CAS  PubMed  Google Scholar 

  10. Ketelslegers, I.A., Van Pelt, D.E., Bryde, S., Neuteboom, R.F., Catsman-Berrevoets, C.E., Hamann, D., and Hintzen, R.Q., Anti-MOG antibodies plead against MS diagnosis in an acquired demyelinating syndromes cohort, Mult. Scler., 2015, vol. 21, p. 1513. https://doi.org/10.1177/1352458514566666

    Article  CAS  PubMed  Google Scholar 

  11. Kezuka, T., Usui, Y., Yamakawa, N., Matsunaga, Y., Matsuda, R., Masuda, M., Utsumi, H., Tanaka, K., and Goto, H., Relationship between NMO-antibody and anti-MOG antibody in optic neuritis, J. Neuro-Ophthalmol., 2012, vol. 32, p. 107. https://doi.org/10.1097/WNO.0b013e31823c9b6c

    Article  Google Scholar 

  12. Kitley, J., Woodhall, M., Waters, P., Leite, M.I., Devenney, E., Craig, J., Palace, J., and Vincent, A., Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype, Neurology, 2012, vol. 79, no. 12, pp. 1273–1277. https://doi.org/10.1212/WNL.0b013e31826aac4e

    Article  CAS  PubMed  Google Scholar 

  13. Liska, A., Galbusera, A., Schwarz, A.J., and Gozzi, A., Functional connectivity hubs of the mouse brain, Neuroimage, 2015, vol. 115, p. 281. https://doi.org/10.1016/j.neuroimage.2015.04.033

    Article  PubMed  Google Scholar 

  14. Lu, J., Testa, N., Jordan, R., Elyan, R., Kanekar, S., Wang, J., Eslinger, P., Yang, Q., Zhang, B., and Karunanayaka, P., Functional connectivity between the resting-state olfactory network and the hippocampus in Alzheimer’s disease, Brain Sci., 2019, vol. 9, p. 338. https://doi.org/10.3390/brainsci9120338

    Article  PubMed  PubMed Central  Google Scholar 

  15. Matsumoto-Oda, A., Oda, R., Hayashi, Y., Murakami, H., Maeda, N., Kumazaki, K., Shimizu, K., and Matsuzawa, T., Vaginal fatty acids produced by chimpanzees during menstrual cycles, Folia Primatol. (Basel), 2003, vol. 74, p. 75. https://doi.org/10.1159/000070000

    Article  PubMed  Google Scholar 

  16. Mechling, A.E., Hübner, N.S., Lee, H.-L., Hennig, J., von Elverfeldt, D., and Harsan, L.-A., Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI, Neuroimage, 2014, vol. 96, p. 203. https://doi.org/10.1016/j.neuroimage.2014.03.078

    Article  PubMed  Google Scholar 

  17. Mel’nik, S.A., Gladysheva, O.S., and Krylov, V.N., Age-related changes in the olfactory sensitivity of male mice to the smell of isovaleric acid, Sens. Sist., 2009, vol. 23, p. 151.

    Google Scholar 

  18. Mel’nik, S.A., Gladysheva, O.S., and Krylov, V.N., Influence of preliminary exposure to isovaleric acid vapors on the olfactory sensitivity of male house mice, Sens. Sist., 2012, vol. 26, p. 52.

    Google Scholar 

  19. Müller-Schwarze, D., Müller-Schwarze, C., Singer, A.G., and Silverstein, R.M., Mammalian pheromone: identification of active component in the subauricular scent of the male pronghorn, Science, 1974, vol. 183, p. 860. https://doi.org/10.1126/science.183.4127.860

    Article  PubMed  Google Scholar 

  20. Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, Amsterdam: Elsevier, 2007.

    Google Scholar 

  21. Postnikova, T.Y., Amakhin, D.V., Trofimova, A.M., Tumanova, N.L., Dubrovskaya, N.M., Kalinina, D.S., Kovalenko, A.A., Shcherbitskaia, A.D., Vasilev, D.S., and Zaitsev, A.V., Maternal hyperhomocysteinemia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats, Cells, 2022, vol. 12, p. 58. https://doi.org/10.3390/cells12010058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ribaut-Barassin, C., Dupont, J.-L., Haeberlé, A.-M., Bombarde, G., Huber, G., Moussaoui, S., Mariani, J., and Bailly, Y., Alzheimer’s disease proteins in cerebellar and hippocampal synapses during postnatal development and aging of the rat, Neuroscience, 2003, vol. 120, p. 405. https://doi.org/10.1016/S0306-4522(03)00332-4

    Article  CAS  PubMed  Google Scholar 

  23. Rice, D. and Barone, S., Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models, Environ. Health Perspect., 2000, vol. 108, p. 511. https://doi.org/10.1289/ehp.00108s3511

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schwarz, A.J., Gass, N., Sartorius, A., Zheng, L., Spedding, M., Schenker, E., Risterucci, C., Meyer-Lindenberg, A., and Weber-Fahr, W., The low-frequency blood oxygenation level-dependent functional connectivity signature of the hippocampal-prefrontal network in the rat brain, Neuroscience, 2013, vol. 228, p. 243. https://doi.org/10.1016/j.neuroscience.2012.10.032

    Article  CAS  PubMed  Google Scholar 

  25. Shcherbitskaia, A.D., Vasilev, D.S., Milyutina, Y.P., Tumanova, N.L., Mikhel, A.V., Zalozniaia, I.V., and Arutjunyan, A.V., Prenatal hyperhomocysteinemia induces glial activation and alters neuroinflammatory marker expression in infant rat hippocampus, Cells, 2021, vol. 10, p. 1536. https://doi.org/10.3390/cells10061536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vasilev, D.S., Shcherbitskaia, A.D., Tumanova, N.L., Mikhel, A.V., Milyutina, Y.P., Kovalenko, A.A., Dubrovskaya, N.M., Inozemtseva, D.B., Zalozniaia, I.V., and Arutjunyan, A.V., Maternal hyperhomocysteinemia disturbs the mechanisms of embryonic brain development and its maturation in early postnatal ontogenesis, Cells, 2023, vol. 12, p. 189. https://doi.org/10.3390/cells12010189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, G., Olofsson, J.K., Koubeissi, M.Z., Menelaou, G., Rosenow, J., Schuele, S.U., Xug, P., Voss, J.L., Lane, G., and Zelano, C., Human hippocampal connectivity is stronger in olfaction than other sensory systems, Progress Neurobiol., 2021, vol. 201, p. 102027. https://doi.org/10.1016/j.pneurobio.2021.102027

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.V. Mikhel (Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences (SIEPB), St. Petersburg) for assistance in formulating the pHHC model. Electron microscopy was carried out using the equipment of the Center for Collective Use of the SIEPB using equipment for physiological, biochemical, and molecular biological research.

Funding

This work was financed from the budget of the SIEPB, state order no. 075-00967-23-00). No additional grants were received to conduct or direct this specific study.

Author information

Authors and Affiliations

Authors

Contributions

N. Tumanova: work idea and experiment planning, writing and editing text. N. Tumanova, D. Vasiliev, N. Dubrovskaya: data collection and processing. Text and figures were approved by all coauthors.

Corresponding author

Correspondence to D. S. Vasiliev.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All studies were conducted in accordance with the principles of biomedical ethics as set out in the 1964 Declaration of Helsinki and its subsequent amendments. They were also approved by the Ethics Committee of the SIEPB Institute of Evolutionary Physiology and Biochemistry (St. Petersburg, Russia), protocol no. 3/2020 dated March 18, 2020.

Additional information

Dedicated to the 90th anniversary of Margarita Gennadievna Belekhova, a wonderful person, researcher, and evolutionary biologist

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: HHC—hyperhomocysteinemia; pHHC—prenatal HHC; GO—oligodendrocyte glycoprotein; ANOVA—analysis of variance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumanova, N.L., Vasiliev, D.S. & Dubrovskaya, N.M. A Study of Neurodegenerative Changes in the CA1 Region of the Dorsal Hippocampus in Adult Rats with Prenatal Hyperhomocysteinemia. Cell Tiss. Biol. 18, 199–210 (2024). https://doi.org/10.1134/S1990519X23700116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23700116

Keywords:

Navigation