Skip to main content
Log in

Decellularized Extracellular Matrix Slows Down Premature Senescence of Human Endometrial Mesenchymal Stromal Cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The extracellular matrix (ECM), the main component of the extracellular space, mediates signal transmission between cells and controls their key functions: proliferation, differentiation, and migration. The relevance of studying ECM research is stipulated to the wide range of its biological properties, which can be used in regenerative medicine and bioengineering. Particular interest is presented the study of the regulatory activity on various cellular functions of cell-derived decellularized ECM (dECM). In this work, we tested the hypothesis about the modulating effect of dECM deposited by young MSC from Wharton’s jelly on the aging phenotype of endometrial human multipotent mesenchymal stromal cells (eMSCs), which the cells acquired in response to oxidative stress. This aspect of ECM functioning in the context of eMSCs has not yet been considered. A comparative study of H2O2-induced senescence of eMSCs cultured on dECM and on plastic for a long time showed a significant change in the hallmarks of aging in the cell population maintained on dECM. Taken together, the results obtained suggest that the dECM is able to partially reverse (retard) premature senescence of eMSCs in response to oxidative stress, as well as expanding the understanding of the ECM as a regulator of the functional activity of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Assunção, M., Dehghan-Baniani, D., Yiu, C.H.K., Später, T., Beyer, S., and Blocki, A., Cell-derived extracellular matrix for tissue engineering and regenerative medicine, Front. Bioeng. Biotechnol., 2020, vol. 8, p. 602009. https://doi.org/10.3389/fbioe.2020.602009

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bertolo, A., Baur, M., Guerrero, J., Pötzel, T., and Stoyanov, J., Autofluorescence is a reliable in vitro marker of cellular senescence in human mesenchymal stromal cells, Sci. Rep., 2019, vol. 9, p. 2074. https://doi.org/10.1038/s41598-019-38546-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blagosklonny, M.V.,Cell cycle arrest is not senescence, Aging (Albany NY), 2011, vol. 3, p. 94.https://doi.org/10.18632/aging.100281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borodkina, A., Shatrova, A., Abushik, P., Nikolsky, N., and Burova, E.,Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells, Aging, 2014, vol. 6, p. 481. https://doi.org/10.18632/aging.100673

    Article  PubMed  PubMed Central  Google Scholar 

  5. Borodkina, A.V., Shatrova, A.N., Deryabin, P.I., Griukova, A.A., Abushik, P.A., Antonov, S.M., Nikolsky, N.N., and Burova, E.B., Calcium alterations signal either to senescence or to autophagy induction in stem cells upon oxidative stress, Aging (Albany NY), 2016, vol. 8, p. 3400.https://doi.org/10.18632/aging.101130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burova, E., Borodkina, A., Shatrova, A., and Nikolsky, N., Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium, Oxid. Med. Cell. Longevity, 2013, vol. 2013, p. 474931. https://doi.org/10.1155/2013/474931

    Article  CAS  Google Scholar 

  7. Campisi, J. and d’Adda di Fagagna, F., Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell. Biol., 2007, vol. 8, p. 729. https://doi.org/10.1038/nrm2233

    Article  CAS  PubMed  Google Scholar 

  8. Choi, K.M., Seo, Y.K., Yoon, H.H., Song, K.Y., Kwon, S.Y., Lee, H.S., and Park, J.K., Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation, J. Biosci. Bioeng., 2008, vol. 105, p. 586. https://doi.org/10.1263/jbb.105.586

    Article  CAS  PubMed  Google Scholar 

  9. Choi, H.R., Cho, K.A., Kang, H.T., Lee, J.B., Kaeberlein, M., Suh, Y., Chung, I.K., and Park, S.C., Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix, Aging Cell, 2011, vol. 10, p. 148. https://doi.org/10.1111/j.1474-9726.2010.00654.x

    Article  CAS  PubMed  Google Scholar 

  10. Debacq-Chainiaux, F., Erusalimsky, J.D., Campisi, J., and Toussaint, O., Protocols to detect senescence-associated beta-galactosidase (SA-β-gal) activity, a biomarker of senescent cells in culture and in vivo, Nat. Protoc., 2009, vol. 4, p. 1798.https://doi.org/10.1038/nprot.2009.191

    Article  CAS  PubMed  Google Scholar 

  11. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D.S., Deans, R.J., Keating, A., Prockop, D.J., and Horwitz, E.M., Minimal criteria for defining multipotent mesenchymal stromal cells, Cytotherapy, 2006, vol. 8, p. 315. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  12. Engeland, K., Cell cycle regulation: p53-p21-RB signaling, Cell Death Differ., 2022, vol. 29, p. 946.https://doi.org/10.1038/s41418-022-00988-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Griukova, A., Deryabin, P., Shatrova, A., Burova, E., Severino, V., Farina, A., Nikolsky, N., and Borodkina, A., Molecular basis of senescence transmitting in the population of human endometrial stromal cells, Aging, 2019, vol. 11, p. 9912. https://doi.org/10.18632/aging.102441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joergensen, P. and Rattan, S.I.S., Extracellular matrix modulates morphology, growth, oxidative stress response and functionality of human skin fibroblasts during aging in vitro, J. Aging Sci., 2014, vol. 2, p. 122. https://doi.org/10.4172/2329-8847.1000122

    Article  CAS  Google Scholar 

  15. Koltsova, A.M., Krylova, T.A., Musorina, A.S., Zenin, V.V., Turilova, V.I., Yakovleva, T.K., and Poljanskaya, G.G., The dynamics of cell properties during long-term cultivation of two lines of mesenchymal stem cells derived from Wharton’s jelly of human umbilical cord, Cell Tissue Biol., 2018, vol. 12, p. 7.https://doi.org/10.1134/S1990519X1801011X

    Article  Google Scholar 

  16. Lai, Y., Sun, Y., Skinner, C.M., Son, E.L., Lu, Z., Tuan, R.S., Jilka, R.L., Ling, J., andChen, X.D., Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells, Stem Cells Dev., 2010, vol. 19, p. 1095. https://doi.org/10.1089/scd.2009.0217

    Article  CAS  PubMed  Google Scholar 

  17. Lee, S.S., Vũ, T.T., Weiss, A.S., and Yeo, G.C., Stress-induced senescence in mesenchymal stem cells: triggers, hallmarks, and current rejuvenation approaches, Eur. J. Cell Bi-ol., 2023, vol. 102, p. 151331. https://doi.org/10.1016/j.ejcb.2023.151331

    Article  CAS  Google Scholar 

  18. Lin, H., Yang, G., Tan, J., and Tuan, R.S., Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation, migration and multi-lineage differentiation potential, Biomaterials, 2012, vol. 33, p. 4480. https://doi.org/10.1016/j.biomaterials.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X., Zhou, L., Chen, X., Liu, T., Pan, G., Cui, W., Li, M., Luo, Z.P., Pei, M., Yang, H., Gong, Y., and He, F., Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells, Mater. Sci. Eng. C Mater. Biol. Ap-pl., 2016, vol. 61, p. 437. https://doi.org/10.1016/j.msec.2015.12.090

    Article  CAS  Google Scholar 

  20. Liu, J., Ding, Y., Liu, Z., and Liang, X., Senescence in mesenchymal stem cells: functional alterations, molecular mechanisms, and rejuvenation strategies, Front. Cell Dev. Biol., 2020, vol. 8, p. 258.https://doi.org/10.3389/fcell.2020.00258

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matveeva, D.K. and Andreeva, E.R., Regulatory activity of decellularized matrix of multipotent mesenchymal stromal cells, Tsitologia, 2020, vol. 62, p. 699. https://doi.org/10.31857/S004137712010003X

    Article  Google Scholar 

  22. Novoseletskaya, E., Grigorieva, O., Nimiritsky, P., Basalova, N., Eremichev, R., Milovskaya, I., Kulebyakin, K., Kulebyakina, M., Rodionov, S., Omelyanenko, N., and Efimenko, A., Mesenchymal stromal cell-produced components of extracellular matrix potentiate multipotent stem cell response to differentiation stimuli, Front. Cell Dev. Biol., 2020, vol. 8, p. 555378. https://doi.org/10.3389/fcell.2020.555378

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pei, M., Zhang, Y., Li, J., and Chen, D., Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis, Stem Cells Dev., 2013, vol. 22, p. 889.https://doi.org/10.1089/scd.2012.0495

    Article  CAS  PubMed  Google Scholar 

  24. Ragelle, H., Naba, A., Larson, B.L., Zhou, F., Prijić, M., Whittaker, C.A., Del Rosario, A., Langer, R., Hynes, R.O., and Anderson, D.G., Comprehensive proteomic characterization of stem cell-derived extracellular matrices, Biomaterials, 2017, vol. 128, p. 147. https://doi.org/10.1016/j.biomaterials.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rao Pattabhi,S., Martinez, J.S., and Keller, T.C.S., 3rd., Decellularized ECM effects on human mesenchymal stem cell stemness and differentiation, Differentiation, 2014, vol. 88, p. 131.https://doi.org/10.1016/j.diff.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  26. Rattan, S.I., Keeler, K.D., Buchanan, J.H., and Holliday, R., Autofuorescence as an index of ageing in human fibroblasts in culture, Biosci. Rep., 1982, vol. 2, p. 561. https://doi.org/10.1007/BF01314216

    Article  CAS  PubMed  Google Scholar 

  27. Sart, S., Jeske, R., Chen, X., Ma, T., and Li, Y., Engineering stem cell-derived extracellular matrices: decellularization, characterization, and biological function, Tissue Eng. Part B, 2020, vol. 26, p. 402. https://doi.org/10.1089/ten.TEB.2019.0349

    Article  CAS  Google Scholar 

  28. Shatrova, A.N., Burova, E.B., Kharchenko, M.V., Smirnova, I.S., Lyublinskaya, O.G., Nikolsky, N.N., and Borodkina, A.V., Outcomes of deferoxamine action on H2O2-induced growth inhibition and senescence progression of human endometrial stem cells, Int. J. Mol. Sci., 2021, vol. 22, p. 6035.https://doi.org/10.3390/ijms22116035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun, E., Li, Y., Lu, W., Chen, Z., Ling, Z., Ran, J., and Jilka, O.L., Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix, FASEB J., 2011, vol. 25, p. 1474.https://doi.org/10.1096/fj.10-161497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vassilieva, I., Kosheverova, V., Vitte, M., Kamentseva, R., Shatrova, A., Tsupkina, N., Skvortsova, E., Borodkina, A., Tolkunova, E., Nikolsky, N., and Burova, E., Paracrine senescence of human endometrial mesenchymal stem cells: a role for the insulin-like growth factor binding protein 3, Aging, 2020, vol. 12, p. 1987. https://doi.org/10.18632/aging.102737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weng, Z., Wang, Y., Ouchi, T., Liu, H., Qiao, X., Wu, C., Zhao, Z., Li, L., and Li, B., Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies, Stem Cells Transl. Med., 2022, vol. 11, p. 356.https://doi.org/10.1093/stcltm/szac004

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xing, H., Lee, H., Luo, L., and Kyriakides, T.R., Extracellular matrix-derived biomaterials in engineering cell function, Biotechnol. Adv., 2020, vol. 42, p. 107421. https://doi.org/10.1016/j.biotechadv.2019.107421

    Article  CAS  PubMed  Google Scholar 

  33. Yang, L., Ge, L., and van Rijn, P., Synergistic effect of cell-derived extracellular matrices and topography on osteogenesis of mesenchymal stem cells, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 25591. https://doi.org/10.1021/acsami.0c05012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, X., He, Y., Chen, Z., Qian, Y., Wang, J., Ji, Z., Tan, X., Li, L., and Lin, M., Autologous decellularized extracellular matrix protects against H2O2-induced senescence and aging in adipose-derived stem cells and stimulates proliferation in vitro, Biosci. Rep., 2019, vol. 39, p. BSR20182137.https://doi.org/10.1042/BSR20182137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zemelko, V.I., Grinchuk, T.M., Domnina, A.P., Artzibasheva, I.V., Zenin, V.V., Kirsanov, A.A., Bichevaia, N.K., Korsak, V.S., and Nikolsky, N.N., Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells, Cell Tissue Biol., 2012, vol. 6, p. 1. https://doi.org/10.1134/S1990519X12010129

    Article  Google Scholar 

  36. Zhou, Y., Zimber, M., Yuan, H., Naughton, G.K., Fernan, R., and Li, W.-J., Effects of human fibroblast-derived extracellular matrix on mesenchymal stem cells, Stem Cell Rev. Rep., 2016, vol. 12, p. 560. https://doi.org/10.1007/s12015-016-9671-7

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, L., Chen, X., Liu, T., Zhu, C., Si, M., Jargstorf, J., Li, M., Pan, G., Gong, Y., Luo, Z.-P., Yang, H., Pei, M., and He, F., SIRT1-dependent anti-senescence effects of cell-deposited matrix on human umbilical cord mesenchymal stem cells,J. Tiss. Eng. Regen. Med., 2018, vol. 12, p. e1008.https://doi.org/10.1002/term.2422

    Article  CAS  Google Scholar 

  38. Zhou, X., Hong, Y., Zhang, H., and Li, X., Mesenchymal stem cell senescence and rejuvenation: current status and challenges, Front. Cell Dev. Biol., 2020, vol. 8, p. 364.https://doi.org/10.3389/fcell.2020.00364

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

MSCWJ-1 cells were obtained from the “Collection of Vertebrate Cell Cultures” Center for Collective Use supported by the Ministry of Education and Science of the Russian Federation, no. 075-15-2021-683.

Funding

The work was supported by an Internal grant from the Institute of Cytology, Russian Academy of Sciences, in 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Burova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by I. Fridlyanskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: AF—autofluorescence; ROS—reactive oxygen species; dECM—decellularized extracellular matrix; CGM—complete growth medium; MSC and eMSC—human multipotent mesenchymal stromal cell and endometrial MSC, respectively; PBS—phosphate-buffered saline solution; SA-β-Gal—senescence associated β-galactosidase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burova, E.B., Perevoznikov, I.E. & Ushakov, R.E. Decellularized Extracellular Matrix Slows Down Premature Senescence of Human Endometrial Mesenchymal Stromal Cells. Cell Tiss. Biol. 18, 173–182 (2024). https://doi.org/10.1134/S1990519X23700037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23700037

Keywords:

Navigation