Skip to main content
Log in

Organization and Role of Bacterial SMC, MukBEF, MksBEF, Wadjet, and RecN Complexes

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

SMC (Structural maintenance of chromosomes) complexes are key participants in the spatial organization of DNA in all living organisms: in bacteria, archaea and eukaryotes. In bacteria, there are several homologues of SMC complexes that perform seemingly unrelated functions, but function through very similar, highly conserved mechanisms. In recent years, it has been established that SMC complexes are capable of forming loops from DNA (through the so-called loop extrusion), which allows them to be considered as a separate class of DNA translocases. This paper discusses bacterial SMC complexes in comparison with their homologues such as MukBEF, MksBEF, RecN, and Wadjet, as well as with eukaryotic SMC complexes. Their properties, role and functions in the key processes of the bacterial cell are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alipour, E. and Marko, J.F., Self-organization of domain structures by DNA-loop-extruding enzymes, Nucleic Acids Res., 2012, vol. 40, p. 11202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arold, S.T., Leonard, P.G., Parkinson, G.N., and Ladbury, J.E., H-NS forms a superhelical protein scaffold for DNA condensation, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, p. 15728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bensaid, A., Almeida, A., Drlica, K., and Rouviere-Yaniv, J., Cross-talk between topoisomerase I and HU in Escherichia coli, J. Mol. Biol., 1996, vol. 256, p. 292.

    Article  CAS  PubMed  Google Scholar 

  4. Bürmann, F., Lee, B.G., Than, T., Sinn, L., O’Reilly, F.J., Yatskevich, S., Rappsilber, J., Hu, B., Nasmyth, K., and Löwe, J., A folded conformation of MukBEF and cohesin, Nat. Struct. Mol. Biol., 2019, vol. 26, p. 227.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cabeen, M.T. and Jacobs-Wagner, C., The bacterial cytoskeleton, Annu. Rev. Genet., 2010, vol. 44, p. 365.

    Article  CAS  PubMed  Google Scholar 

  6. Chimthanawala, A., Parmar, J.J., Kumar, S., Iyer, K.S., Rao, M., and Badrinarayanan, A., SMC protein RecN drives RecA filament translocation for in vivo homology search, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 119, p. e2209304119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dame, R.T., Noom, M.C., and Wuite, G.J., Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation, Nature, 2006, vol. 444, p. 387.

    Article  CAS  PubMed  Google Scholar 

  8. Dame, R.T., Rashid, F.-Z.M., and Grainger, D.C., Chromosome organization in bacteria: mechanistic insights into genome structure and function, Nat. Rev. Genet., 2020, vol. 21, p. 227.

    Article  CAS  PubMed  Google Scholar 

  9. Danilova, O., Reyes-Lamothe, R., Pinskaya, M., Sherratt, D., and Possoz, C., MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves, Mol. Microbiol., 2007, vol. 65, p. 1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deep, A., Gu, Y., Gao, Y.Q., Ego, K.M., Herzik, M.A., Jr., Zhou, H., and Corbett, K.D., The SMC-family Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA, Mol. Cell, 2022, vol. 82, p. 4145.e7.

    Article  Google Scholar 

  11. Diebold-Durand, M.L., Lee, H., Ruiz Avila, L.B., Noh, H., Shin, H.C., Im, H., Bock, F.P., Bürmann, F., Durand, A., Basfeld, A., Ham, S., Basquin, J., Oh, B.H., and Gruber, S., Structure of full-length SMC and rearrangements required for chromosome organization, Mol. Cell, 2017, vol. 67, p. 334.e5.

    Article  Google Scholar 

  12. Eltsov, M., MacLellan, K.M., Maeshima, K., Frangakis, A.S., and Dubochet, J., Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, p. 19732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ganji, M., Shaltiel, I.A., Bisht, S., Kim, E., Kalichava, A., Haering, C.H., and Dekker, C., Real-time imaging of DNA loop extrusion by condensin, Science, 2018, vol. 360, p. 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Georgatos, S.D., Markaki, Y., Christogianni, A., and Politou, A.S., Chromatin remodeling during mitosis: a structure-based code?, Front. Biosci. (Landmark ed.), 2009, vol. 14, p. 2017.

  15. Gibcus, J.H., Samejima, K., Goloborodko, A., Samejima, I., Naumova, N., Nuebler, J., Kanemaki, M.T., Xie, L., Paulson, J.R., Earnshaw, W.C., Mirny, L.A., and Dekker, J., A pathway for mitotic chromosome formation, Science, 2018, vol. 359, p. eaao6135.

  16. Gligoris, T.G., Scheinost, J.C., Bürmann, F., Petela, N., Chan, K.L., Uluocak, P., Beckouët, F., Gruber, S., Nasmyth, K., and Löwe, J., Closing the cohesin ring: Structure and function of its Smc3-kleisin interface, Science, 2014, vol. 346, p. 963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gordon, B.R., Li, Y., Cote, A., Weirauch, M.T., Ding, P., Hughes, T.R., Navarre, W.W., Xia, B., and Liu, J., Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, p. 10690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grainger, D.C., Structure and function of bacterial H-NS protein, Biochem. Soc. Trans., 2016, vol. 44, p. 1561.

    Article  CAS  PubMed  Google Scholar 

  19. Grove, A., Functional evolution of bacterial histone-like HU proteins, Curr. Iss. Mol. Biol., 2011, vol. 13, p. 1.

    CAS  Google Scholar 

  20. Gruber, S. and Errington, J., Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis, Cell, 2009 vol. 137, p. 685.

    Article  CAS  PubMed  Google Scholar 

  21. Gruber, S., Haering, C.H., and Nasmyth, K., Chromosomal cohesin forms a ring, Cell, 2003, vol. 112, p. 765.

    Article  CAS  PubMed  Google Scholar 

  22. Gutierrez-Escribano, P., Newton, M.D., Llauró, A., Huber, J., Tanasie, L., Davy, J., Aly, I., Aramayo, R., Montoya, A., Kramer, H., Stigler, J., Rueda, D.S., and Aragon, L., A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules, Sci. Adv., 2019 vol. 5, p. eaay6804.

  23. Haering, C.H., Farcas, A.-M., Arumugam, P., Metson, J., and Nasmyth, K., The cohesin ring concatenates sister DNA molecules, Nature, 2008, vol. 454, p. 297.

    Article  CAS  PubMed  Google Scholar 

  24. Hancock, S.P., Stella, S., Cascio, D., and Johnson, R.C., DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis, PLoS One, 2016, vol. 11, p. e0150189.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hirano, T., The ABCs of SMC proteins: two-armed A-TPases for chromosome condensation, cohesion, and repair, Genes Dev., 2002, vol. 16, p. 399.

    Article  CAS  PubMed  Google Scholar 

  26. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J., and Peters, J.M., Distinct functions of condensin I and II in mitotic chromosome assembly, J. Cell Sci., 2004, vol. 117, p. 6435.

    Article  CAS  PubMed  Google Scholar 

  27. Hons, M.T., Huis In 't Veld, P.J., Kaesler, J., Rombaut, P., Schleiffer, A., Herzog, F., Stark, H., and Peters, J.M., Topology and structure of an engineered human cohesin complex bound to Pds5B, Nat. Commun., 2016, vol. 7, p. 12523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hutchison, C.A., Chuang, R.-Y., Noskov, V.N., Assad-Garcia, N., Deerinck, T.J., Ellisman, M.H., Gill, J., Kannan, K., Karas, B.J., Ma, L., Pelletier, J.F., Qi, Z.-Q., Richter, R.A., Strychalski, E.A., Sun, L., et al., Design and synthesis of a minimal bacterial genome, Science, 2016, vol. 351, p. aad6253.

    Article  PubMed  Google Scholar 

  29. Ishiguro, K.I., The cohesin complex in mammalian meiosis, Genes Cells, 2019, vol. 24, p. 6.

    Article  CAS  PubMed  Google Scholar 

  30. Japaridze, A., van Wee, R., Gogou, C., Kerssemakers, J.W.J., van den Berg, D.F., and Dekker, C., MukBEF-dependent chromosomal organization in widened Escherichia coli, Front. Microbiol., 2023, vol. 14, p. 1107093.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Keyamura, K., Sakaguchi, C., Kubota, Y., Niki, H., and Hishida, T., RecA protein recruits structural maintenance of chromosomes (SMC)-like RecN protein to DNA double-strand breaks, J. Biol. Chem., 2013, vol. 288, p. 29229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, E., Barth, R., and Dekker, C., Looping the genome with SMC complexes, Annu. Rev. Biochem., 2023, vol. 92, p. 15.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, E., Kerssemakers, J., Shaltiel, I.A., Haering, C.H., and Dekker, C., DNA-loop extruding condensin complexes can traverse one another, Nature, 2020, vol. 579, p. 438.

    Article  CAS  PubMed  Google Scholar 

  34. Lammens, A., Schele, A., and Hopfner, K., Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases, Curr. Biol., 2004, vol. 14, p. 1778.

    Article  CAS  PubMed  Google Scholar 

  35. Larionov, V.L., Karpova, T.S., Kouprina, N.Y., and Jouravleva, G.A., A mutant of Saccharomyces cerevisiae with impaired maintenance of centromeric plasmids, Curr. Genet., 1985, vol. 10, p. 15.

    Article  CAS  PubMed  Google Scholar 

  36. Lesterlin, C., Ball, G., Schermelleh, L., and Sherratt, D.J., RecA bundles mediate homology pairing between distant sisters during DNA break repair, Nature, 2014, vol. 506, p. 249.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, H.W., Roisné-Hamelin, F., Beckert, B., Li, Y., Myasnikov, A., and Gruber, S., DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage, Mol. Cell, 2022, vol. 82, p. 4727.e6.

    Article  Google Scholar 

  38. Mäkelä, J. and Sherratt, D.J., Organization of the Escherichia coli chromosome by a MukBEF axial core, Mol. Cell, 2020, vol. 78, p. 250.e5.

    Article  Google Scholar 

  39. McLean, E.K., Lenhart, J.S., and Simmons, L.A., RecA is required for the assembly of RecN into DNA repair complexes on the nucleoid, J. Bacteriol., 2021, vol. 203, p. e0024021.

    Article  PubMed  Google Scholar 

  40. Minnen, A., Attaiech, L., Thon, M., Gruber, S., and Veening, J.W., SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae, Mol. Microbiol., 2011, vol. 81, p. 676.

    Article  CAS  PubMed  Google Scholar 

  41. Minnen, A., Bürmann, F., Wilhelm, L., Anchimiuk, A., Diebold-Durand, M.L., and Gruber, S., Control of Smc coiled coil architecture by the ATPase heads facilitates targeting to chromosomal ParB/parS and release onto flanking DNA, Cell Rep., 2016, vol. 14, p. 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murayama, Y., Samora, C.P., Kurokawa, Y., Iwasaki, H., and Uhlmann, F., Establishment of DNA–DNA interactions by the cohesin ring, Cell, 2018, vol. 172, p. 465.e15.

    Article  Google Scholar 

  43. Nasmyth, K., Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis, Annu. Rev. Genet., 2001, vol. 35, p. 673.

    Article  CAS  PubMed  Google Scholar 

  44. Nolivos, S. and Sherratt, D., The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes, FEMS Microbiol. Rev., 2014, vol. 38, p. 380.

    Article  CAS  PubMed  Google Scholar 

  45. Nolivos, S., Upton, A.L., Badrinarayanan, A., Muller, J., Zawadzka, K., Wiktor, J., Gill, A., Arciszewska, L., Nicolas, E., and Sherratt, D., MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation, Nat. Commun., 2016, vol. 7, p. 10466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Olins, A.L. and Olins, D.E., Spheroid chromatin units (v bodies), Science, 1974, vol. 183, p. 330.

    Article  CAS  PubMed  Google Scholar 

  47. Ou, H.D., Phan, S., Deerinck, T.J., Thor, A., Ellisman, M.H., and O’Shea, C.C., ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells, Science, 2017, vol. 357, p. eaag0025.

  48. Palecek, J.J. and Gruber, S., Kite proteins: a superfamily of SMC/Kleisin partners conserved across Bacteria, Archaea, and Eukaryotes, Structure, 2015, vol. 23, p. 2183.

    Article  CAS  PubMed  Google Scholar 

  49. Pellegrino, S., Radzimanowski, J., de Sanctis, D., Boeri Erba, E., McSweeney, S., and Timmins, J., Structural and functional characterization of an SMC-like protein RecN: new insights into double-strand break repair, Structure, 2012, vol. 20, p. 2076.

    Article  CAS  PubMed  Google Scholar 

  50. Petrushenko, Z.M., She, W., and Rybenkov, V.V., A new family of bacterial condensins, Mol. Microbiol., 2011, vol. 81, p. 881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pradhan, B., Kanno, T., Umeda Igarashi, M., Loke, M.S., Baaske, M.D., Wong, J.S.K., Jeppsson, K., Björkegren, C., and Kim, E., The Smc5/6 complex is a DNA loop-extruding motor, Nature, 2023, vol. 616, p. 843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rice, P.A., Yang, S., Mizuuchi, K., and Nash, H.A., Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn, Cell, 1996, vol. 87, p. 1295.

    Article  CAS  PubMed  Google Scholar 

  53. Riggs, A.D., DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function, Philos. Trans. R. Soc., B, 1990, vol. 326, p. 285.

  54. Rouvière-Yaniv, J. and Gros, F., Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 1975, vol. 72, p. 3428.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sanborn, A.L., Rao, S.S., Huang, S.C., Durand, N.C., Huntley, M.H., Jewett, A.I., Bochkov, I.D., Chinnappan, D., Cutkosky, A., Li, J., Geeting, K.P., Gnirke, A., Melnikov, A., McKenna, D., Stamenova, E.K., et al., Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, p. E6456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sanchez, H., Cardenas, P.P., Yoshimura, S.H., Takeyasu, K., and Alonso, J.C., Dynamic structures of Bacillus subtilis RecN-DNA complexes, Nucleic Acids Res., 2008, vol. 36, p. 110.

    Article  CAS  PubMed  Google Scholar 

  57. Schleiffer, A., Kaitna, S., Maurer-Stroh, S., Glotzer, M., Nasmyth, K., and Eisenhaber, F., Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners, Mol. Cell, 2003, vol. 11, p. 571.

    Article  CAS  PubMed  Google Scholar 

  58. Schneider, R., Lurz, R., Lüder, G., Tolksdorf, C., Travers, A., and Muskhelishvili, G., An architectural role of the Escherichia coli chromatin protein FIS in organising DNA, Nucleic Acids Res., 2001, vol. 29, p. 5107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schwartz, M.A. and Shapiro, L., An SMC ATPase mutant disrupts chromosome segregation in Caulobacter, Mol. Microbiol., 2011, vol. 82, p. 1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shintomi, K., Inoue, F., Watanabe, H., Ohsumi, K., Ohsugi, M., and Hirano, T., Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts, Science, 2017, vol. 356, p. 1284.

    Article  CAS  PubMed  Google Scholar 

  61. Smits, W.K. and Grossman, A.D., The transcriptional regulator Rok binds A+T-rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis, PLoS Genet., 2010, vol. 6, p. e1001207.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Srinivasan, M., Fumasoni, M., Petela, N.J., Murray, A., and Nasmyth, K.A., Cohesion is established during DNA replication utilising chromosome associated cohesin rings as well as those loaded de novo onto nascent DNAs, Elife, 2020, vol. 9, p. e56611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stella, S., Cascio, D., and Johnson, R.C., The shape of the DNA minor groove directs binding by the DNA-bending protein Fis, Genes Dev., 2010, vol. 24, p. 814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stojkova, P., Spidlova, P., and Stulik, J., Nucleoid-associated protein HU: a lilliputian in gene regulation of bacterial nirulence, Fron. Cell. Infect. Microbiol., 2019, vol. 9, p. 159.

    Article  CAS  Google Scholar 

  65. Strunnikov, A.V., Larionov, V.L., and Koshland, D., SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family, J. Cell Biol., 1993, vol. 123, p. 1635.

    Article  CAS  PubMed  Google Scholar 

  66. Sutani, T. and Yanagida, M., DNA renaturation activity of the SMC complex implicated in chromosome condensation, Nature, 1997, vol. 388, p. 798.

    Article  CAS  PubMed  Google Scholar 

  67. Swinger, K.K. and Rice, P.A., Structure-based analysis of HU-DNA binding, J. Mol. Biol., 2007, vol. 365, p. 1005.

    Article  CAS  PubMed  Google Scholar 

  68. Tran, N.T., Laub, M.T., and Le, T.B.K., SMC progressively aligns chromosomal arms in Caulobacter crescentus but is antagonized by convergent transcription, Cell Rep., 2017, vol. 20, p. 2057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Uranga, L.A., Reyes, E.D., Patidar, P.L., Redman, L.N., and Lusetti, S.L., The cohesin-like RecN protein stimulates RecA-mediated recombinational repair of DNA double-strand breaks, Nat. Commun., 2017, vol. 8, p. 15282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van Noort, J., Verbrugge, S., Goosen, N., Dekker, C., and Dame, R.T., Dual architectural roles of HU: formation of flexible hinges and rigid filaments, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, p. 6969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, X., Tang, O.W., Riley, E.P., and Rudner, D.Z., The SMC condensin complex is required for origin segregation in Bacillus subtilis, Curr. Biol., 2014 vol. 24, p. 287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, X., Le, T.B., Lajoie, B.R., Dekker, J., Laub, M.T., and Rudner, D.Z., Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis, Genes Dev., 2015, vol. 29, p. 1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, X., Brandão, H.B., Le, T.B., Laub, M.T., and Rudner, D.Z., Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus, Science, 2017, vol. 355, p. 524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, X., Hughes, A.C., Brandão, H.B., Walker, B., Lierz, C., Cochran, J.C., Oakley, M.G., Kruse, A.C., and Rudner, D.Z., In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex, Mol. Cell, 2018, vol. 71, p. 841.e5.

    Article  Google Scholar 

  75. Weiß, M., Giacomelli, G., Assaya Mathilde, B., Grundt, F., Haouz, A., Peng, F., Petrella, S., Wehenkel Anne, M., and Bramkamp, M., The MksG nuclease is the executing part of the bacterial plasmid defense system Mk-sBEFG, Nucleic Acids Res., 2023, vol. 51, p. 3288.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wells, J.N., Gligoris, T.G., Nasmyth, K.A., and Marsh, J.A., Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins, Curr. Bi-ol., 2017, vol. 27, p. R17.

    Article  CAS  Google Scholar 

  77. Wiktor, J., Gynnå, A.H., Leroy, P., Larsson, J., Coceano, G., Testa, I., and Elf, J., RecA finds homologous DNA by reduced dimensionality search, Nature, 2021, vol. 597, p. 426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wilhelm, L., Bürmann, F., Minnen, A., Shin, H.C., Toseland, C.P., Oh, B.H., and Gruber, S., SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis, Elife, 2015, vol. 4, p. e06659.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Witz, G. and Stasiak, A., DNA supercoiling and its role in DNA decatenation and unknotting, Nucleic Acids Res., 2010, vol. 38, p. 2119.

    Article  CAS  PubMed  Google Scholar 

  80. Xu, P., Mahamid, J., Dombrowski, M., Baumeister, W., Olins, A.L., and Olins, D.E., Interphase epichromatin: last refuge for the 30-nm chromatin fiber?, Chromosoma, 2021, vol. 130, p. 91.

    Article  CAS  PubMed  Google Scholar 

  81. Yatskevich, S., Rhodes, J., and Nasmyth, K., Organization of chromosomal DNA by SMC complexes, Annu. Rev. Genet., 2019, vol. 53, p. 445.

    Article  CAS  PubMed  Google Scholar 

  82. Yoshimura, S.H., Hizume, K., Murakami, A., Sutani, T., Takeyasu, K., and Yanagida, M., Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer, Curr. Biol., 2002, vol. 12, p. 508.

    Article  CAS  PubMed  Google Scholar 

  83. Yoshinaga, M. and Inagaki, Y., Ubiquity and origins of structural maintenance of chromosomes (SMC) proteins in Eukaryotes, Genome Biol. Evol., 2021 vol. 13, p. evab256.

  84. Yu, W., Herbert, S., Graumann, P.L., and Götz, F., Contribution of SMC (structural maintenance of chromosomes) and SpoIIIE to chromosome segregation in Staphylococci, J. Bacteriol., 2010, vol. 192, p. 4067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, N., Kuznetsov, S.G., Sharan, S.K., Li, K., Rao, P.H., and Pati, D., A handcuff model for the cohesin complex, J. Cell Biol., 2008, vol. 183, p. 1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao, H., Bhowmik, B.K., Petrushenko, Z.M., and Rybenkov, V.V., Alternating dynamics of oriC, SMC, and MksBEF in segregation of Pseudomonas aeruginosa chromosome, mSphere, 2020, vol. 5, p. e00238-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou, M., DNA sliding and loop formation by E. coli SMC complex: MukBEF, Biochem. Biophys. Rep., 2022, vol. 31, p. 101297.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors of the work express their gratitude to George Pobegalov for a fruitful discussion of the manuscript of this work.

Funding

The work was supported by the Russian Science Foundation (project no. 22-74-00072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Vedyaykin.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, N.E., Potysyeva, A.S. & Vedyaykin, A.D. Organization and Role of Bacterial SMC, MukBEF, MksBEF, Wadjet, and RecN Complexes. Cell Tiss. Biol. 18, 115–127 (2024). https://doi.org/10.1134/S1990519X23700074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23700074

Keywords:

Navigation