Skip to main content

Advertisement

Log in

Modeling the Effects of Tool Pin Configurations and Friction Stir Processing Parameters on Tungsten Inert Gas Welded Dissimilar Aluminum Alloy Joints

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The primary focus of this investigation is to examine the impact of friction stir processing (FSP) parameters on the tungsten inert gas (TIG) welded dissimilar AA6061-T6 and AA7075-T6 joints. Tool spindle speed, feed rate, tilt angle, and tool pin configuration were selected as input processing variables. A regression model was built using a central composite rotatable design matrix (CCRD) and response surface methodology (RSM) to forecast the mechanical features such as ultimate tensile strength (UTS), percentage elongation (PE), microhardness (MH), and residual stress (RS). Analysis of variance (ANOVA) was used to estimate the adequacy of the built-up models and identify significant terms. The results revealed that the tool pin configuration was found to be the most influential processing parameter relative to other parameters. The TIG + FSP joint fabricated with cylindrical threaded with triflat faces (THF) pin configuration has the highest mechanical properties and low residual stresses. The TIG + FSP joint showed an optimal UTS of 279.93 MPa, a PE of 20.92%, an MH of 115.42 HV, and a RS of 19.95 MPa when using a tool spindle speed of 1106.39 rpm, a feed rate of 45.79 mm/min, a tilt angle of 2.00 degrees, and a THF pin configuration. TIG joints exhibited brittle failure because of the rough cleavage facet and macro voids, while TIG + FSP joints exhibited brittle failure due to fine dimples and no voids. Electron backscatter diffraction showed that TIG + FSP welding produced ultrafine grains and significant grain boundary strengthening compared to TIG joints. Pole figures showed some recrystallization \({\text{A}}_{1}^{*}\)/\({\text{A}}_{2}^{*}\) and A/\(\stackrel{\mathrm{-}}{\text{A}}\) textures in the TIG joint at the FZ center, whereas the TIG + FSP joint exhibited significant shear deformation B/\(\overline{\text{B}}\) and C textures at the SZ center. Moreover, the intensity of texture in the TIG joint was only 3.02, while it was 10.34 in the TIG + FSP joint, indicating that significant texture strengthening occurred after FSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.I. Rodriguez, J.B. Jordon, P.G. Allison et al., Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding of 6061-to-7050 Aluminum Alloys, Mater. Des., 2015, 83, p 60–65. https://doi.org/10.1016/j.matdes.2015.05.074

    Article  CAS  Google Scholar 

  2. S. Memon, M. Paidar, O.O. Ojo et al., The Role of Stirring Time on the Metallurgical and Mechanical Properties during Modified Friction Stir Clinching of AA6061-T6 and AA7075-T6 Sheets, Results Phys., 2020 https://doi.org/10.1016/j.rinp.2020.103364

    Article  Google Scholar 

  3. Z. Liu, K. Yang, and D. Yan, Refill Friction Stir Spot Welding of Dissimilar 6061/7075 Aluminum Alloy, High Temp. Mater. Process. (London), 2019, 38, p 69–75. https://doi.org/10.1515/htmp-2017-0139

    Article  CAS  Google Scholar 

  4. S. Jain and R.S. Mishra, Multi-response Optimization of Friction Stir Welded Reinforced Joints of Dissimilar Aluminum Alloys, Trans. Indian Inst. Met., 2023 https://doi.org/10.1007/s12666-023-03096-9

    Article  Google Scholar 

  5. R.M.S. Bin and A.N. Sinha, Effect of Heat Input on Microstructure and Mechanical Properties of Automated Tungsten Inert Gas-Welded Dissimilar AA6061-T6 and AA7075-T6 Joints, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-09026-6

    Article  Google Scholar 

  6. S. Raja, M.R. Muhamad, M.F. Jamaludin, and F. Yusof, A Review on Nanomaterials Reinforcement in Friction Stir Welding, J. Mater. Res. Technol., 2020, 9, p 16459–16487. https://doi.org/10.1016/j.jmrt.2020.11.072

    Article  CAS  Google Scholar 

  7. S. Raja, M.R. Muhamad, F. Yusof et al., Friction Stir Alloying of AZ61 and Mild Steel with Al-CNT Additive, Sci. Technol. Weld. Join., 2022, 27, p 533–540. https://doi.org/10.1080/13621718.2022.2080449

    Article  CAS  Google Scholar 

  8. B. Wu, M.Z. Ibrahim, S. Raja et al., The Influence of Reinforcement Particles Friction Stir Processing on Microstructure, Mechanical Properties, Tribological and Corrosion Behaviors: A Review, J. Mater. Res. Technol., 2022, 20, p 1940–1975. https://doi.org/10.1016/j.jmrt.2022.07.172

    Article  CAS  Google Scholar 

  9. M.A. Ariffin bin, M.R. Muhamad bin, S. Raja et al., Friction Stir Alloying of AZ61 and Mild Steel with Cu-CNT Additive, J. Mater. Res. Technol., 2022, 21, p 2400–2415. https://doi.org/10.1016/j.jmrt.2022.10.082

    Article  CAS  Google Scholar 

  10. M.R. bin Muhamad, S. Raja, M.F. Jamaludin et al., Enhancements on Dissimilar Friction Stir Welding Between AZ31 and SPHC Mild Steel With Al–Mg as Powder Additives, J. Manuf. Sci. Eng., 2021 https://doi.org/10.1115/1.4049745

    Article  Google Scholar 

  11. S. Mabuwa and V. Msomi, Fatigue Behaviour of the Multi-Pass Friction Stir Processed AA8011-H14 and AA6082-T651 Dissimilar Joints, Eng. Fail. Anal., 2020, 118, p 104876. https://doi.org/10.1016/j.engfailanal.2020.104876

    Article  CAS  Google Scholar 

  12. S. Mabuwa and V. Msomi, Effect of Friction Stir Processing on Gas Tungsten Arc-Welded and Friction Stir-Welded 5083–H111 Aluminium Alloy Joints, Adv. Mater. Sci. Eng., 2019, 2019, p 1–14. https://doi.org/10.1155/2019/3510236

    Article  CAS  Google Scholar 

  13. S. Mabuwa and V. Msomi, Comparative Analysis Between Normal and Submerged Friction Stir Processed Friction Stir Welded Dissimilar Aluminium Alloy Joints, J. Mater. Res. Technol., 2020, 9, p 9632–9644. https://doi.org/10.1016/j.jmrt.2020.06.024

    Article  CAS  Google Scholar 

  14. G.A. Roeen, S.G. Yousefi, R. Emadi et al., Remanufacturing the AA5052 GTAW Welds Using Friction Stir Processing, Metals (Basel), 2021, 11, p 749. https://doi.org/10.3390/met11050749

    Article  CAS  Google Scholar 

  15. J. da Silva, J.M. Costa, A. Loureiro, and J.M. Ferreira, Fatigue Behaviour of AA6082-T6 MIG Welded Butt Joints Improved by Friction Stir Processing, Mater. Des., 2013, 51, p 315–322. https://doi.org/10.1016/j.matdes.2013.04.026

    Article  CAS  Google Scholar 

  16. H. Mehdi and R.S. Mishra, Effect of Friction Stir Processing on Mechanical Properties and Heat Transfer of TIG Welded Joint of AA6061 and AA7075, Def. Technol., 2021, 17, p 715–727. https://doi.org/10.1016/j.dt.2020.04.014

    Article  Google Scholar 

  17. H. Mehdi and R.S. Mishra, Microstructure and Mechanical Characterization of Tungsten Inert Gas-Welded Joint of AA6061 and AA7075 by Friction Stir Processing, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2021, 235, p 2531–2546. https://doi.org/10.1177/14644207211007882

    Article  CAS  Google Scholar 

  18. R.M.S. Bin and A.N. Sinha, Improving Tensile Strength, Impact Toughness and Wear Resistance of TIG Welded Dissimilar AA7075-T6/AA6061-T6 Joints Through Friction Stir Processing, Int. J. Interact. Des. Manuf. (IJIDeM), 2024 https://doi.org/10.1007/s12008-023-01691-0

    Article  Google Scholar 

  19. C.B. Fuller and M.W. Mahoney, The Effect of Friction Stir Processing on 5083–H321/5356 Al Arc Welds: Microstructural and Mechanical Analysis, Metall. Mater. Trans. A, 2006, 37, p 3605–3615. https://doi.org/10.1007/s11661-006-1055-1

    Article  Google Scholar 

  20. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50, p 1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  21. M. Shamanian, H. Mostaan, M. Safari, and J.A. Szpunar, Friction Stir Modification of GTA 7075–T6 Al Alloy Weld Joints: EBSD Study and Microstructural Evolutions, Arch. Civ. Mech. Eng., 2017, 17, p 574–585. https://doi.org/10.1016/j.acme.2017.01.002

    Article  Google Scholar 

  22. A.N. Salah, S. Mabuwa, H. Mehdi et al., Effect of Multipass FSP on Si-rich TIG Welded Joint of Dissimilar Aluminum Alloys AA8011-H14 and AA5083-H321: EBSD and Microstructural Evolutions, SILICON, 2022, 14, p 9925–9941. https://doi.org/10.1007/s12633-022-01717-4

    Article  CAS  Google Scholar 

  23. M. Ilangovan, S. Rajendra Boopathy, and V. Balasubramanian, Effect of Tool Pin Profile on Microstructure and Tensile Properties of Friction Stir Welded Dissimilar AA 6061–AA 5086 Aluminium Alloy Joints, Def. Technol., 2015, 11, p 174–184. https://doi.org/10.1016/j.dt.2015.01.004

    Article  Google Scholar 

  24. R. Kadaganchi, M.R. Gankidi, and H. Gokhale, Optimization of Process Parameters of Aluminum Alloy AA 2014–T6 Friction Stir Welds by Response Surface Methodology, Def. Technol., 2015, 11, p 209–219. https://doi.org/10.1016/j.dt.2015.03.003

    Article  Google Scholar 

  25. S. Jain, R.S. Mishra, and H. Mehdi, Influence of SiC Microparticles and Multi-Pass FSW on Weld Quality of the AA6082 and AA5083 Dissimilar Joints, SILICON, 2023 https://doi.org/10.1007/s12633-023-02455-x

    Article  Google Scholar 

  26. R.M.S. Bin and A.N. Sinha, Parametric Optimization and Characterization of AA6061-T6 and AA7075-T6 Tungsten Inert Gas Welding Joints Subjected to Friction Stir Processing, J. Mater. Eng. Perform., 2024 https://doi.org/10.1007/s11665-023-09111-w

    Article  Google Scholar 

  27. V. Msomi, S. Mabuwa, O. Muribwathoho, and S.S. Motshwanedi, Effect of Tool Geometry on Microstructure and Mechanical Properties of Submerged Friction Stir Processed AA6082/AA8011 Joints, Mater. Today Proc., 2021, 46, p 638–644. https://doi.org/10.1016/j.matpr.2020.11.580

    Article  CAS  Google Scholar 

  28. W. Safeen, S. Hussain, A. Wasim et al., Predicting the Tensile Strength, Impact Toughness, and Hardness of Friction Stir-Welded AA6061-T6 Using Response Surface Methodology, Int. J. Adv. Manuf. Technol., 2016, 87, p 1765–1781. https://doi.org/10.1007/s00170-016-8565-9

    Article  Google Scholar 

  29. M. Azam, M. Jahanzaib, A. Wasim, and S. Hussain, Surface Roughness Modeling Using RSM for HSLA Steel by Coated Carbide Tools, Int. J. Adv. Manuf. Technol., 2015, 78, p 1031–1041. https://doi.org/10.1007/s00170-014-6707-5

    Article  Google Scholar 

  30. H. Mehdi and R.S. Mishra, An Experimental Analysis and Optimization of Process Parameters of AA6061 and AA7075 Welded Joint by TIG+FSP Welding Using RSM, Adv. Mater. Process. Technol., 2022, 8, p 598–620. https://doi.org/10.1080/2374068X.2020.1829952

    Article  Google Scholar 

  31. H. Mehdi and R.S. Mishra, Investigation of Mechanical Properties and Heat Transfer of Welded Joint of AA6061 and AA7075 Using TIG+FSP Welding Approach, J. Adv. Join. Process., 2020, 1, p 100003. https://doi.org/10.1016/j.jajp.2020.100003

    Article  Google Scholar 

  32. H. Mehdi and R.S. Mishra, Effect of Friction Stir Processing on Microstructure and Mechanical Properties of TIG Welded Joint of AA6061 and AA7075, Metall. Microstruct. Anal., 2020, 9, p 403–418. https://doi.org/10.1007/s13632-020-00640-7

    Article  CAS  Google Scholar 

  33. H. Mehdi and R.S. Mishra, Effect of Friction Stir Processing on Mechanical Properties and Wear Resistance of Tungsten Inert Gas Welded Joint of Dissimilar Aluminum Alloys, J. Mater. Eng. Perform., 2021, 30, p 1926–1937. https://doi.org/10.1007/s11665-021-05549-y

    Article  CAS  Google Scholar 

  34. V. Msomi and S. Mabuwa, Effect of Material Positioning on Fatigue Life of the Friction Stir Processed Dissimilar Joints, Mater Res Express, 2020, 7, p 106520. https://doi.org/10.1088/2053-1591/abc18c

    Article  CAS  Google Scholar 

  35. S. Mabuwa and V. Msomi, Review on Friction Stir Processed TIG and Friction Stir Welded Dissimilar Alloy Joints, Metals (Basel), 2020, 10, p 142. https://doi.org/10.3390/met10010142

    Article  CAS  Google Scholar 

  36. Md.P. Alam and A.N. Sinha, Optimization of Process Parameters of Friction Stir Welding Using Desirability Function Analysis, Weld. Int., 2022, 36, p 129–143. https://doi.org/10.1080/09507116.2022.2026745

    Article  Google Scholar 

  37. P. Periyasamy, B. Mohan, V. Balasubramanian et al., Multi-Objective Optimization of Friction Stir Welding Parameters Using Desirability Approach to Join Al/SiCp Metal Matrix Composites, Trans. Nonferr. Metals Soc. China, 2013, 23, p 942–955. https://doi.org/10.1016/S1003-6326(13)62551-0

    Article  CAS  Google Scholar 

  38. S.M. Senthil, R. Parameshwaran, S. Ragu Nathan et al., A Multi-Objective Optimization of the Friction Stir Welding Process Using RSM-Based-Desirability Function Approach for Joining Aluminum Alloy 6063–T6 Pipes, Struct. Multidiscip. Optim., 2020, 62, p 1117–1133. https://doi.org/10.1007/s00158-020-02542-2

    Article  Google Scholar 

  39. M. Vahdati, M. Moradi, and M. Shamsborhan, Modeling and Optimization of the Yield Strength and Tensile Strength of Al7075 Butt Joint Produced by FSW and SFSW Using RSM and Desirability Function Method, Trans. Indian Inst. Met., 2020, 73, p 2587–2600. https://doi.org/10.1007/s12666-020-02075-8

    Article  CAS  Google Scholar 

  40. S. Kumar, S. Kumar, and A. Kumar, Optimization of Process Parameters for Friction Stir Welding of Joining A6061 and A6082 Alloys by Taguchi Method, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2013, 227, p 1150–1163. https://doi.org/10.1177/0954406212459448

    Article  CAS  Google Scholar 

  41. M. Raturi, A. Garg, and A. Bhattacharya, Joint Strength and Failure Studies of Dissimilar AA6061-AA7075 Friction Stir Welds: Effects of Tool Pin, Process Parameters and Preheating, Eng. Fail. Anal., 2019, 96, p 570–588. https://doi.org/10.1016/j.engfailanal.2018.12.003

    Article  CAS  Google Scholar 

  42. R.M.S. Bin, A.N. Sinha, H. Mehdi, and Q. Murtaza, Effect of Pulsed TIG Welding Parameters on the Microstructural Evolution and Mechanical Properties of Dissimilar AA6061-T6 and AA7075-T6 Weldments, Arab. J. Sci. Eng., 2023 https://doi.org/10.1007/s13369-023-08563-5

    Article  Google Scholar 

  43. M.S. Bin Reyaz and A.N. Sinha, An Experimental Investigation on Mechanical Characteristics and Wear Behaviour of TIG Welded Dissimilar Aluminum Alloys, J. Adhes. Sci. Technol., 2023 https://doi.org/10.1080/01694243.2023.2251782

    Article  Google Scholar 

  44. M.S. Bin Reyaz and A.N. Sinha, Analysis of Mechanical Properties and Optimization of Tungsten Inert Gas Welding Parameters on Dissimilar AA6061-T6 and AA7075-T6 by a Response Surface Methodology-Based Desirability Function Approach, Eng. Optim., 2023 https://doi.org/10.1080/0305215X.2023.2230133

    Article  Google Scholar 

  45. N. Shanmuga Sundaram and N. Murugan, Tensile Behavior of Dissimilar Friction Stir Welded Joints of Aluminium Alloys, Mater. Des., 2010, 31, p 4184–4193. https://doi.org/10.1016/j.matdes.2010.04.035

    Article  CAS  Google Scholar 

  46. M. Karthikeyan and Jonah, Effect of Tool Travel Speed on Tensile Strength of Friction Stir Welded Dissimilar Joint of Aluminium AA6061 T6 Alloy and Maraging M250 Steel, Mater. Res. Express, 2021 https://doi.org/10.1088/2053-1591/abde57

    Article  Google Scholar 

  47. S. Benavides, Y. Li, L.E. Murr et al., Low-Temperature Friction-Stir Welding of 2024 Aluminum, Scr. Mater., 1999, 41, p 809–815. https://doi.org/10.1016/S1359-6462(99)00226-2

    Article  CAS  Google Scholar 

  48. R. Jain, S.K. Pal, and S.B. Singh, Investigation on Effect of Pin Shapes on Temperature, Material Flow and Forces During Friction Stir Welding: A Simulation Study, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 2019, 233, p 1980–1992. https://doi.org/10.1177/0954405418805615

    Article  Google Scholar 

  49. P. Vijayavel and V. Balasubramanian, Effect of Pin Profile Volume Ratio on Microstructure and Tensile Properties of Friction Stir Processed Aluminum Based Metal Matrix Composites, J. Alloys Compd., 2017, 729, p 828–842. https://doi.org/10.1016/j.jallcom.2017.09.117

    Article  CAS  Google Scholar 

  50. K. Elangovan and V. Balasubramanian, Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy, Mater. Des., 2008, 29, p 362–373. https://doi.org/10.1016/j.matdes.2007.01.030

    Article  CAS  Google Scholar 

  51. D. Peng, J. Shen, Q. Tang et al., Effects of Aging Treatment and Heat Input on the Microstructures and Mechanical Properties of TIG-Welded 6061–T6 Alloy Joints, Int. J. Miner. Metall. Mater., 2013, 20, p 259–265. https://doi.org/10.1007/s12613-013-0721-8

    Article  CAS  Google Scholar 

  52. Y. Koli, N. Yuvaraj, S. Aravindan, and A. Vipin, Multi-Response Mathematical Model for Optimization of Process Parameters in CMT Welding of Dissimilar Thickness AA6061-T6 and AA6082-T6 Alloys Using RSM-GRA Coupled with PCA, Adv. Ind. Manuf. Eng., 2021 https://doi.org/10.1016/j.aime.2021.100050

    Article  Google Scholar 

  53. N.P. Zant, C.K.Y. Wong, and J. Tong, Fatigue Failure in the Cement Mantle of a Simplified Acetabular Replacement Model, Int. J. Fatigue, 2007, 29, p 1245–1252. https://doi.org/10.1016/j.ijfatigue.2006.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M. Tariq, I. Khan, G. Hussain, and U. Farooq, Microstructure and Micro-Hardness Analysis of Friction Stir Welded Bi-Layered Laminated Aluminum Sheets, Int. J. Lightweight Mater. Manuf., 2019, 2, p 123–130. https://doi.org/10.1016/j.ijlmm.2019.04.010

    Article  CAS  Google Scholar 

  55. S. Madhavan, M. Kamaraj, L. Vijayaraghavan, and K. Srinivasa Rao, Microstructure and Mechanical Properties of Aluminium/Steel Dissimilar Weldments: Effect of Heat Input, Mater. Sci. Technol. (United Kingdom), 2017, 33, p 200–209. https://doi.org/10.1080/02670836.2016.1176716

    Article  CAS  Google Scholar 

  56. M. Bhattacharyya, T. Gnaupel-Herold, K.S. Raja et al., Evaluation of Residual Stresses in Isothermal Friction Stir Welded 304L Stainless Steel Plates, Mater. Sci. Eng. A, 2021, 826, p 141982. https://doi.org/10.1016/j.msea.2021.141982

    Article  CAS  Google Scholar 

  57. Q. Qin, H. Zhao, J. Li et al., Microstructures and Mechanical Properties of TIG Welded Al-Mg2Si Alloy Joints, J. Manuf. Process., 2020, 56, p 941–949. https://doi.org/10.1016/j.jmapro.2020.05.058

    Article  Google Scholar 

  58. A. Equbal, M.I. Equbal, and A.K. Sood, An Investigation on the Feasibility of Fused Deposition Modelling Process in EDM Electrode Manufacturing, CIRP J. Manuf. Sci. Technol., 2019, 26, p 10–25. https://doi.org/10.1016/j.cirpj.2019.07.001

    Article  Google Scholar 

  59. S. Verma, M. Gupta, and J.P. Misra, Optimization of Process Parameters in Friction Stir Welding of Armor-Marine Grade Aluminium Alloy Using Desirability Approach, Mater. Res. Express, 2018, 6, p 026505. https://doi.org/10.1088/2053-1591/aaea01

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Indradev Samajdar, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, for facilitating the EBSD characterization and Prof. Qasim Murtaza, Department of Mechanical Engineering, Delhi Technological University, Delhi, for assisting with the residual stress characterization of the welded samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Saquib Bin Reyaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyaz, M.S.B., Sinha, A.N. Modeling the Effects of Tool Pin Configurations and Friction Stir Processing Parameters on Tungsten Inert Gas Welded Dissimilar Aluminum Alloy Joints. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09444-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09444-0

Keywords

Navigation