Skip to main content
Log in

Investigation of the Combined Effects of Stress Concentrations and Plasma Nitriding Parameters on the Fatigue Performance of AISI 4140 Low Alloy Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The fatigue performance of machine parts under cyclic loads is significantly reduced by notches, cracks and geometric irregularities on their surfaces. Therefore, it is necessary to eliminate the notch effect, which is effective on the formation of fatigue cracks. In this study, it is aimed to enhance the fatigue strength of notched parts via plasma nitriding. Four various radii (r = 1, 2, 4 and 8 mm) variations were created from AISI 4140 steel with theoretical stress concentration factors (Kt) of 1.63, 1.41, 1.27 and 1.19, respectively. Then, the samples were plasma nitrided at 480 °C for 2 h and 9 h. The morphological, structural and mechanical properties of the samples were characterized by SEM, XRD and microhardness tester. The fatigue tests were performed using a rotating bending fatigue test device. All plasma nitrided parts exhibited higher fatigue strength compared to untreated samples and the level of this increase decreased with increasing Kt. The fatigue properties of plasma nitrided parts improved in comparison to untreated parts, depending on the residual stresses, microhardness and diffusion layer thickness. Consequently, it was found that the fatigue limit improvement up to 72% was achieved in the samples with the lowest Kt and nitrided for long periods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.A. Rahmat, R.N. Ibrahim, and R.H. Oskouei, Stress Raisers and Its Effect on Fatigue Sensitivity: A Study of Notch and Fretting Fatigue, Univers. J. Mech. Eng., 2013, 1(3), p 83–91.

    Article  Google Scholar 

  2. J.W. Han, S.H. Han, B.C. Shin, and J.H. Kim, Fatigue Crack Initiation and Propagation Life of Welded Joints, Key Eng. Mater., 2005, 297, p 781.

    Article  Google Scholar 

  3. M. Akita and K. Tokaji, Effect of Carburizing on Notch Fatigue Behavior in AISI 316 Austenitic Stainless Steel, Surf. Coat. Technol., 2006, 200(20–21), p 6073–6078.

    Article  CAS  Google Scholar 

  4. A. Al-Turaihi, Q.H. Bader, and A. Basim, Notch Effect on Alumiium Alloy Rod under Rotating Bend Fatigue Load, IOP Conf. Ser. Mater. Sci. Eng., 2021, 1094(1), p 012069.

    Article  CAS  Google Scholar 

  5. W.Q. Hao, L. Tan, X.G. Yang, D.Q. Shi, M.L. Wang, G.L. Miao, and Y.S. Fan, A Physics-Informed Machine Learning Approach for Notch Fatigue Evaluation of Alloys Used in Aerospace, Int. J. Fatigue, 2022, 2023(170), p 107536. https://doi.org/10.1016/j.ijfatigue.2023.107536

    Article  CAS  Google Scholar 

  6. S. Bhuiyan, Y. Mutoh, Y. Miyashita, and Y. Ostuka, Notch Effect on Fatigue Strength of Die Cast AM60 Magnesium Alloy, in Asian Pacific Conference for Materials and Mechanics, 2009.

  7. G.H. Majzoobi and N. Daemi, The Effects of Notch Geometry on Fatigue Life Using Notch Sensitivity Factor, Trans. Indian Inst. Met., 2010, 63(2–3), p 547–552.

    Article  Google Scholar 

  8. A.T. Htoo, Y. Miyashita, Y. Otsuka, Y. Mutoh, and S. Sakurai, Notch Fatigue Behavior of Ti-6Al-4V Alloy in Transition Region between Low and High Cycle Fatigue, Int. J. Fatigue, 2017, 95, p 194–203. https://doi.org/10.1016/j.ijfatigue.2016.10.024

    Article  CAS  Google Scholar 

  9. A.H. Saleh, M.A. Nasser Ali, M.I. Ismail, and A.N. Abood, The Radius Size Variation Effects on Fatigue Strength of AA6061-T6 and AA6061-O Alloys, IOP Conf. Ser. Mater. Sci. Eng., 2019, 518(3), p 032063.

    Article  CAS  Google Scholar 

  10. M.A. Terres, N. Laalai, and H. Sidhom, Effect of Nitriding and Shot-Peening on the Fatigue Behavior of 42CrMo4 Steel: Experimental Analysis and Predictive Approach, Mater. Des., 2012, 35, p 741–748. https://doi.org/10.1016/j.matdes.2011.09.055

    Article  CAS  Google Scholar 

  11. S.M. Hassani-Gangaraj, A. Moridi, M. Guagliano, A. Ghidini, and M. Boniardi, The Effect of Nitriding, Severe Shot Peening and Their Combination on the Fatigue Behavior and Micro-Structure of a Low-Alloy Steel, Int. J. Fatigue, 2014, 62, p 67–76. https://doi.org/10.1016/j.ijfatigue.2013.04.017

    Article  CAS  Google Scholar 

  12. H. Weil, L. Barrallier, S. Jégou, N. Caldeira-Meulnotte, and G. Beck, Optimization of Gaseous Nitriding of Carbon Iron-Based Alloy Based on Fatigue Resistance Modeling, Int. J. Fatigue, 2018, 110, p 238–245. https://doi.org/10.1016/j.ijfatigue.2018.01.022

    Article  CAS  Google Scholar 

  13. C. Zhou, M. Wang, W. Hui, H. Dong, L. Wang, and R. Wu, Rotating Bending Fatigue Properties of Two Case Hardening Steels after Nitriding Treatment, Mater. Des., 2013, 46(76), p 539–545. https://doi.org/10.1016/j.matdes.2012.08.0615

    Article  CAS  Google Scholar 

  14. R. Mohammadzadeh, A. Akbari, and M. Drouet, Microstructure and Wear Properties of AISI M2 Tool Steel on RF Plasma Nitriding at Different N2–H2 Gas Compositions, Surf. Coat. Technol., 2014, 258, p 566–573. https://doi.org/10.1016/j.surfcoat.2014.08.036

    Article  CAS  Google Scholar 

  15. C. Zheng, Y. Liu, H. Wang, H. Zhu, R. Ji, Z. Liu, and Y. Shen, Research on the Effect of Gas Nitriding Treatment on the Wear Resistance of Ball Seat Used in Multistage Fracturing, Mater. Des., 2015, 70, p 45–52. https://doi.org/10.1016/j.matdes.2014.12.050

    Article  CAS  Google Scholar 

  16. H. Kovacı, A.F. Yetim, O. Baran, and A. Çelik, Fatigue Crack Growth Analysis of Plasma Nitrided AISI 4140 Low-Alloy Steel: Part 1-Constant Amplitude Loading, Mater. Sci. Eng. A, 2016, 672, p 257–264.

    Article  Google Scholar 

  17. M. Ozturk, F. Husem, I. Karademir, E. Maleki, A. Amanov, and O. Unal, Fatigue Crack Growth Rate of AISI 4140 Low Alloy Steel Treated via Shot Peening and Plasma Nitriding, Vacuum, 2022, 2023(207), p 111552. https://doi.org/10.1016/j.vacuum.2022.111552

    Article  CAS  Google Scholar 

  18. O. Unal, E. Maleki, and R. Varol, Plasma Nitriding of Gradient Structured AISI 304 at Low Temperature: Shot Peening as a Catalyst Treatment, Vacuum, 2019, 164, p 194–197. https://doi.org/10.1016/j.vacuum.2019.03.027

    Article  CAS  Google Scholar 

  19. S.Y. Sirin, K. Sirin, and E. Kaluc, Effect of the Ion Nitriding Surface Hardening Process on Fatigue Behavior of AISI 4340 Steel, Mater Charact, 2008, 59(4), p 351–358.

    Article  CAS  Google Scholar 

  20. S.M.Y. Soleimani, A.R. Mashreghi, S.S. Ghasemi, and M. Moshrefifar, The Effect of Plasma Nitriding on the Fatigue Behavior of DIN 1.2210 Cold Work Tool Steel, Mater. Des., 2012, 35, p 87–92. https://doi.org/10.1016/j.matdes.2011.09.067

    Article  CAS  Google Scholar 

  21. M.S. Aghareb Parast, M. Jamalkhani Khameneh, M. Azadi, M. Azadi, M.H. Mahdipanah, and S. Roostaie, Effect of Plasma Nitriding on High-Cycle Fatigue Properties and Fracture Behaviors of GJS700 Nodular Cast Iron under Cyclic Bending Loading, Fatigue Fract. Eng. Mater. Struct., 2021, 44(8), p 2070–2086.

    Article  CAS  Google Scholar 

  22. O. Unal, E. Maleki, and R. Varol, Comprehensive Analysis of Pulsed Plasma Nitriding Preconditions on the Fatigue Behavior of AISI 304 Austenitic Stainless Steel, Int. J. Miner. Metall. Mater., 2021, 28(4), p 657–664.

    Article  CAS  Google Scholar 

  23. Y. Peng, S. Zhang, Z. Liu, and J. Gong, Notch Fatigue Behavior of Low-Temperature Gaseous Carburised 316L Austenitic Stainless Steel, Mater. Sci. Technol., 2020, 36(10), p 1076–1082. https://doi.org/10.1080/02670836.2020.1753155

    Article  CAS  Google Scholar 

  24. P. De La Cruz and T. Ericsson, Influence of Sea Water on the Fatigue Strength and Notch Sensitivity of a Plasma Nitrided B-Mn Steel, Mater. Sci. Eng. A, 1998, 247(1–2), p 204–213.

    Article  Google Scholar 

  25. C.M. Suh, J.K. Hwang, K.S. Son, and H.K. Jang, Fatigue Characteristics of Nitrided SACM 645 According to the Nitriding Condition and Notch, Mater. Sci. Eng. A, 2005, 392(1–2), p 31–37.

    Article  Google Scholar 

  26. S. Qin, L. Wang, L. Di, C. Zhang, and M. Zhao, Effect of Carburizing Process on Bending Fatigue Performance of Notched Parts of 18CrNiMo7-6 Alloy Steel, Eng. Fail. Anal., 2023, 147, p 107161. https://doi.org/10.1016/j.engfailanal.2023.107161

    Article  CAS  Google Scholar 

  27. H.E.R. Lake, Peterson’s Stress Concentration Factors Second Edition, by W.D. Pilkey, Strain, 1998, 34(2), p 71.

    Article  Google Scholar 

  28. Q. Bader and E.K. Njim, Effect of Stress Ratio and V Notch Shape on Fatigue Life in Steel Beam, Int. J. Sci. Eng. Res., 2014, 5(6), p 1145–1154.

    Google Scholar 

  29. L. Susmel, Notches, Nominal Stresses, Fatigue Strength Reduction Factors and Constant/Variable Amplitude Multiaxial Fatigue Loading, Int. J. Fatigue, 2022, 162, p 106941. https://doi.org/10.1016/j.ijfatigue.2022.106941

    Article  Google Scholar 

  30. DIN 50113:1982, Testing of Metallic Materials; Rotating Bending Fatigue Test.

  31. ASTM E384-11: Standart Test Method for Knoop and Vickers Hardness of Materials.

  32. Y. Hong and C. Sun, The Nature and the Mechanism of Crack Initiation and Early Growth for Very-High-Cycle Fatigue of Metallic Materials—An Overview, Theor. Appl. Fract. Mech., 2017, 92, p 331–350. https://doi.org/10.1016/j.tafmec.2017.05.002

    Article  Google Scholar 

  33. S.Y. Sirin, Effect of Hot Dip Galvanizing on the Fatigue Behavior of Hot Rolled and Ion Nitrided AISI 4340 Steel, Int. J. Fatigue, 2019, 123, p 1–9. https://doi.org/10.1016/j.ijfatigue.2019.01.001

    Article  CAS  Google Scholar 

  34. J. Mei, S. Xing, A. Vasu, J. Chung, R. Desai, and P. Dong, The Fatigue Limit Prediction of Notched Components—A Critical Review and Modified Stress Gradient Based Approach, Int. J. Fatigue, 2020, 135, p 105531. https://doi.org/10.1016/j.ijfatigue.2020.105531

    Article  Google Scholar 

  35. ASTM E739-91(2004)e1: Standart Practice for Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data.

  36. S.Y. Sirin and E. Kaluc, Structural Surface Characterization of Ion Nitrided AISI 4340 Steel, Mater. Des., 2012, 36, p 741–747. https://doi.org/10.1016/j.matdes.2011.12.025

    Article  CAS  Google Scholar 

  37. H. Shen and L. Wang, Influence of Temperature and Duration on the Nitriding Behavior of 40Cr Low Alloy Steel in Mixture of NH3 and N2, Surf. Coat. Technol., 2019, 378, p 124953. https://doi.org/10.1016/j.surfcoat.2019.124953

    Article  CAS  Google Scholar 

  38. H.J. Park, B.S. Kim, C.S. Ahn, K.T. Cho, K. Il Moon, and S.S. Kim, Fracture Behavior of Ion-Nitrided AISI 4140 Steel in Accordance with Variable Applied Current Density, Adv. Mater. Sci. Eng., 2022, 2022, p 1.

    Article  Google Scholar 

  39. F.F. Ling, Residual Stress Measurement and the Slitting Method, Springer, Berlin, 2007.

    Google Scholar 

  40. M. Ebrahimi, M.H. Sohi, A.H. Raouf, and F. Mahboubi, Effect of Plasma Nitriding Temperature on the Corrosion Behavior of AISI 4140 Steel before and after Oxidation, Surf. Coat. Technol., 2010, 205(SUPPL. 1), p S261–S266. https://doi.org/10.1016/j.surfcoat.2010.07.115

    Article  CAS  Google Scholar 

  41. U. Zerbst, M. Vormwald, R. Pippan, H.P. Gänser, C. Sarrazin-Baudoux, and M. Madia, About the Fatigue Crack Propagation Threshold of Metals as a Design Criterion—A Review, Eng. Fract. Mech., 2016, 153, p 190–243. https://doi.org/10.1016/j.engfracmech.2015.12.002

    Article  Google Scholar 

  42. C. Zhao, W. Zha, J. Zhang, and X. Nie, Surface Fatigue Cracking of Plasma Nitrided Cast Iron D6510 under Cyclic Inclined Contact Stresses, Int. J. Fatigue, 2019, 124, p 10–14. https://doi.org/10.1016/j.ijfatigue.2019.02.046

    Article  CAS  Google Scholar 

  43. R. Branco, J.D. Costa, F. Berto, A. Kotousov, and F.V. Antunes, Fatigue Crack Initiation Behavior of Notched 34CrNiMo6 Steel Bars under Proportional Bending-Torsion Loading, Int. J. Fatigue, 2020, 130, p 105268. https://doi.org/10.1016/j.ijfatigue.2019.105268

    Article  CAS  Google Scholar 

  44. G. Ongtrakulkij, J. Kajornchaiyakul, K. Kondoh, and A. Khantachawana, Investigation of Microstructure, Residual Stress, and Hardness of Ti-6Al-4V after Plasma Nitriding Process with Different Times and Temperatures, Coatings, 2022, 12(12), p 1932.

    Article  CAS  Google Scholar 

  45. U. Zerbst, M. Madia, M. Vormwald, and H.T. Beier, Fatigue Strength and Fracture Mechanics—A General Perspective, Eng. Fract. Mech., 2018, 198, p 2–23. https://doi.org/10.1016/j.engfracmech.2017.04.030

    Article  Google Scholar 

  46. A.F. Yetim, H. Kovacı, Y. Uzun, H. Tekdir, and A. Çelik, A Comprehensive Study on the Fatigue Properties of Duplex Surface Treated Ti6Al4V by Plasma Nitriding and DLC Coating, Surf. Coat. Technol., 2022, 458, p 129367. https://doi.org/10.1016/j.surfcoat.2023.129367

    Article  CAS  Google Scholar 

  47. M.S. Mahdipoor, D. Kevorkov, P. Jedrzejowski, and M. Medraj, Water Droplet Erosion Behavior of Gas Nitrided Ti6Al4V, Surf. Coat. Technol., 2016, 292, p 78–89. https://doi.org/10.1016/j.surfcoat.2016.03.032

    Article  CAS  Google Scholar 

  48. W. Kong, V.M. Villapun, Y. Lu, L.N. Carter, M. Kuang, S. Cox, and M.M. Attallah, The Influence of Thermal Oxidation on the Microstructure, Fatigue Properties, Tribological and in Vitro Behavior of Laser Powder Bed Fusion Manufactured Ti-34 Nb-13Ta-5Zr-0.2O Alloy, J. Alloys Compd., 2022, 929, p 167264.

    Article  CAS  Google Scholar 

  49. P. De La Cruz, M. Odén, and T. Ericsson, Influence of Plasma Nitriding on Fatigue Strength and Fracture of a B-Mn Steel, Mater. Sci. Eng. A, 1998, 242(1–2), p 181–194.

    Article  Google Scholar 

  50. L.B. Winck, J.L.A. Ferreira, J.A. Araujo, M.D. Manfrinato, and C.R.M. Da Silva, Surface Nitriding Influence on the Fatigue Life Behavior of ASTM A743 Steel Type CA6NM, Surf. Coat. Technol., 2013, 232, p 844–850. https://doi.org/10.1016/j.surfcoat.2013.06.110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Atatürk University East Anatolia High Technology Application and Research Center (DAYTAM) and Erzurum Technical University High Technology Application and Research Center (YUTAM) for their assistance.

Author information

Authors and Affiliations

Authors

Contributions

F. Yılan: Visualization, Investigation, Validation, Methodology, Writing-original draft, Writing—review & editing. H. Kovacı: Conceptualization, Supervision, Validation, Investigation, Methodology, Writing—original draft, Writing—review & editing.

Corresponding author

Correspondence to H. Kovacı.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılan, F., Kovacı, H. Investigation of the Combined Effects of Stress Concentrations and Plasma Nitriding Parameters on the Fatigue Performance of AISI 4140 Low Alloy Steel. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09424-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09424-4

Keywords

Navigation