Skip to main content
Log in

False Positive Signals in the Detection of Explosives by Ion Mobility Spectrometry: Organic Acids

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We studied 20 varieties of fruits (fruits, berries, and vegetables), the presence of trace amounts of which in samples caused false positive signals in an explosives detector based on ion mobility spectrometry. These signals were due to the presence of organic acids, which effectively form negative ions, in the fruits. The mobilities of some types of ions of these acids were close to or coincided with the mobilities of ions of explosives. In particular, the ions of ascorbic or citric acid, malic acid, tartaric acid, the adduct anions of oxalic and malic acids, and the adduct anions of citric and malic acids were identified by the detector as the ions of 2,4-dinitrotoluene, 1,2,3-trinitroxypropane, HMX, and 2,4,6-trinitrotoluene and the adduct anions of hexogen and lactic acid, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Stellman, J.M., Encyclopaedia of Occupational Health and Safety, Geneva: Int. Labour Office, 1998, 4th ed., vol. 4.

    Google Scholar 

  2. Twibell, J.D., Home, J.M., Smalldon, K.W., and Higgs, D.G., J. Forensic Sci., 1982, vol. 27, no. 4, p. 783.

    Article  CAS  PubMed  Google Scholar 

  3. Eiceman, G.A. and Schmidt, H., in Aspects of Explosives Detection, Marshall, M. and Oxley, J.C., Eds., Amsterdam: Elsevier, 2009, p. 171.

    Google Scholar 

  4. Buryakov, I.A., J. Anal. Chem., 2011, vol. 66, no. 8, p. 674.

    Article  CAS  Google Scholar 

  5. Eiceman, G.A., Rajapakse, R., and Stone, J.A., in Counterterrorist Detection Techniques of Explosives, Kagan, A. and Oxley, J.C., Eds., Amsterdam: Elsevier, 2022, p. 1.

    Google Scholar 

  6. DeBono, R. and Lareau, R.T., in in Counterterrorist Detection Techniques of Explosives, Kagan, A. and Oxley, J.C., Eds., Amsterdam: Elsevier, 2022, p. 163.

    Google Scholar 

  7. Buryakov, T.I. and Buryakov, I.A., J. Anal. Chem., 2022, vol. 77, no. 1, p. 43.

    Article  CAS  Google Scholar 

  8. Sedwick, V., Massey, M., Codio, T., and Kanu, A.B., Int. J. Ion Mobility Spectrom., 2017, vol. 20, p. 75.

    Article  CAS  Google Scholar 

  9. Kanu, A.B., Wu, C., and Hill, H.H., Anal. Chim. Acta, 2008, vol. 610, p. 125.

    Article  CAS  PubMed  Google Scholar 

  10. Chiluwal, U., Lee, G., Rajapakse, M.Y., Willy, T., Lukow, S., Schmidt, H., and Eiceman, G.A., Analyst, 2019, vol. 144, no. 6, p. 2052.

    Article  CAS  PubMed  Google Scholar 

  11. Cook, G.W., PhD Thesis, Bethesda, MD: Univ. Health Sci., 2006.

  12. Cook, G.W., LaPuma, P.T., Hook, G.L., and Eckenrode, B.A., J. Forensic Sci., 2010, vol. 55, no. 6, p. 1582.

    Article  CAS  PubMed  Google Scholar 

  13. Kelebek, H., Ind. Crops Prod., 2010, vol. 32, p. 269.

    Article  Google Scholar 

  14. Fernández-Fernández, R., López-Martínez, J.C., Romero-González, R., Martínez-Vidal, J.L., Flores, M.I.A., and Frenich, A.G., Chromatographia, 2010, vol. 72, nos. 1–2, p. 55.

    Article  Google Scholar 

  15. Scherer, R., Rybka, A.C.P., Ballus, C.A., Meinhart, A.D., Filho, J.T., and Godoy, H.T., Food Chem., 2012, vol. 135, p. 150.

    Article  CAS  Google Scholar 

  16. Khosravi, F. and Rastakhiz, N., Int. J. Life Sci., 2015, vol. 9, no. 5, p. 50.

    Article  Google Scholar 

  17. Walker, R.P. and Famiani, F., in Horticultural Reviews, Warrington, I., Ed., New York: Wiley, 2018, vol. 45, p. 371.

    Google Scholar 

  18. Zhang, X., Wang, X., Liu, L., Wang, W., Liu, Y., Deng, Q., Zhang, H., Wang, X., and Xia, H., Sci. Hortic., 2020, vol. 265, p. 109256.

    Article  CAS  Google Scholar 

  19. Pan, T., Ali, M.M., Gong, J., She, W., Pan, D., Guo, Z., Yu, Y., and Chen, F., Agronomy, 2021, vol. 11, p. 2393.

    Article  CAS  Google Scholar 

  20. Aleksandrova, D.A., Melamed, T.B., Baberkina, E.P., Kovalenko, A.E., Kuznetsov, Vl.Vit., Kuznetsov, Vit.Vl., Fenin, A.A., Shaltaeva, Yu.R., and Belyakov, V.V., J. Anal. Chem., 2021, vol. 76, p. 1282.

    Article  CAS  Google Scholar 

  21. Golovin, A.V., Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Eng. Phys. Inst., 2010.

  22. Gromov, E.A., Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Eng. Phys. Inst., 2018.

  23. Spangler, G.E. and Lawless, P.A., Anal. Chem., 1978, vol. 50, p. 884.

    Article  CAS  Google Scholar 

  24. Huang, S.D., Kolaitis, L., and Lubman, D.M., Appl. Spectrosc., 1987, vol. 41, no. 8, p. 1371.

    Article  CAS  Google Scholar 

  25. Kozole, J., Levine, L.A., Tomlinson-Phillips, J., and Stairs, J.R., Talanta, 2015, vol. 140, p. 10.

    Article  CAS  PubMed  Google Scholar 

  26. Waltman, M.J., PhD Thesis, Socorro, NM: New Mexico Tech, 2010.

  27. Lee, J., Park, S., Cho, S.G., Goh, E.M., Lee, S., Koh, S.-S., and Kim, J., Talanta, 2014, vol. 120, p. 64.

    Article  CAS  PubMed  Google Scholar 

  28. Ewing, R.G. and Waltman, M.J., Int. J. Ion Mobility Spectrom., 2009, vol. 12, p. 65.

    Article  CAS  Google Scholar 

  29. Takada, Y., in Mass Spectrometry Handbook, Lee, M.S., Ed., Hoboken: Wiley, 2012, p. 477.

    Google Scholar 

  30. Zhao, D., Yu, P., Han, B., and Qiao, F., Molecules, 2022, vol. 27, p. 5873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, J., Wang, H., Cooks, R.G., and Ouyang, Z., Anal. Chem., 2011, vol. 83, p. 7608.

    Article  CAS  PubMed  Google Scholar 

  32. Valadbeigi, Y., Azizmohammadi, S., and Ilbeigi, V., J. Phys. Chem. A, 2020, vol. 124, no. 17, p. 3386.

    Article  CAS  PubMed  Google Scholar 

  33. Huang, D., Wang, M., Wu, J., and Chen, Y., Molecules, 2021, vol. 26, p. 6760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jafari, M.T., Badihi, Z., and Jazan, E., Talanta, 2012, vol. 99, p. 520.

    Article  CAS  PubMed  Google Scholar 

  35. Carlton, A.G., Turpin, B.J., Altieri, K.E., Seitzinger, S., Reff, A., Lim, H., and Ervens, B., Atmos. Environ., 2007, vol. 41, p. 7588.

    Article  CAS  Google Scholar 

  36. Hill, C.A. and Thomas, C.L.P., Analyst, 2003, vol. 128, p. 55.

    Article  CAS  PubMed  Google Scholar 

  37. Ross, S.K. and Bell, A.J., Int. J. Mass Spectrom. Ion Processes, 2002, vol. 218.

  38. Antoine coefficients for vapor pressure. http://www.academia.edu/41335958/Antoine_coefficients_for_vapor_pressure. Accessed December 7, 2022.

  39. Yaws, C.L., Handbook of Vapor Pressure: C1 to C4 Compounds, Houston: Gulf, 1994.

    Google Scholar 

  40. Cundall, R.B., Palmer, T.F., and Wood, C.E.C., J. Chem. Soc., Faraday Trans. 1, 1981, vol. 77, p. 711.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. I. Buryakov or I. A. Buryakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buryakov, T.I., Buryakov, I.A. False Positive Signals in the Detection of Explosives by Ion Mobility Spectrometry: Organic Acids. J Anal Chem 79, 430–439 (2024). https://doi.org/10.1134/S1061934824040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824040038

Keywords:

Navigation