Skip to main content
Log in

Intrinsic ecto-5'-Nucleotidase/A1R Coupling may Confer Neuroprotection to the Cerebellum in Experimental Autoimmune Encephalomyelitis

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Experimental autoimmune encephalomyelitis (EAE) is widely used animal model of multiple sclerosis (MS). The disease is characterized by demyelination and neurodegeneration triggered by infiltrated autoimmune cells and their interaction with astrocytes and microglia. While neuroinflammation is most common in the spinal cord and brainstem, it is less prevalent in the cerebellum, where it predisposes to rapid disease progression. Because the induction and progression of EAE are tightly regulated by adenosinergic signaling, in the present study we compared the adenosine-producing and -degrading enzymes, ecto-5'-nucleotidase (eN/CD73) and adenosine deaminase (ADA), as well as the expression levels of adenosine receptors A1R and A2AR subtypes in nearby areas around the fourth cerebral ventricle—the pontine tegmentum, the choroid plexus (CP), and the cerebellum. Significant differences in histopathological findings were observed between pontine tegmentum and cerebellum on the same horizontal section level. Reactive astrogliosis and massive infiltration of CD4 + cells and macrophages in CP and pontine tegmentum resulted in local demyelination. In cerebellum, there was no evidence of infiltrates, microgliosis and neuroinflammation at the same sectional level. In addition, Bergman glia showed no signs of reactive gliosis. As for adenosinergic signaling, significant upregulation of eN/CD73 was observed in all areas studied, but in association with different adenosine receptor subtypes. In CP and pons, overexpression of eN/CD73 was coupled with induction of A2AR, whereas in cerebellum, a modest increase in eN/CD73 in resident Bergman glia was accompanied by a strong induction of A1R in the same type of astrocytes. Thus, the presence of specialized astroglia and intrinsic differences in adenosinergic signaling may play a critical role in the differential regional susceptibility to EAE inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Raw data were generated at Faculty of Biology University of Belgrade. Derived data supporting the findings of this study are available from the corresponding author on request.

References

  1. Lassmann H, van Horssen J (2011) The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 585(23):3715–3723. https://doi.org/10.1016/j.febslet.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y et al (2022) Cerebellar and/or Brainstem Lesions Indicate Poor Prognosis in Multiple Sclerosis: A Systematic Review. Front Neurol 13:874388. https://doi.org/10.3389/fneur.2022.874388

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nakashima I, Fujihara K, Okita N, Takase S, Itoyama Y (1999) Clinical and MRI study of brain stem and cerebellar involvement in Japanese patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 67(2):153–157. https://doi.org/10.1136/jnnp.67.2.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weier K et al (2015) The role of the cerebellum in multiple sclerosis. Cerebellum 14(3):364–374. https://doi.org/10.1007/s12311-014-0634-8

    Article  PubMed  Google Scholar 

  5. Wilkins A (2017) Cerebellar dysfunction in multiple sclerosis. Front Neurol 8:312. https://doi.org/10.3389/fneur.2017.00312

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weier K et al (2016) Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis. Mult Scler 22(5):599–607. https://doi.org/10.1177/1352458515595132

    Article  PubMed  Google Scholar 

  7. Weinshenker BG, Issa M, Baskerville J (1996) Long-term and short-term outcome of multiple sclerosis: a 3-year follow-up study. Arch Neurol 53(4):353–358. https://doi.org/10.1001/archneur.1996.00550040093018

    Article  CAS  PubMed  Google Scholar 

  8. Rot U, Ledinek AH, Jazbec SS (2008) Clinical, magnetic resonance imaging, cerebrospinal fluid and electrophysiological characteristics of the earliest multiple sclerosis. Clin Neurol Neurosurg 110(3):233–238. https://doi.org/10.1016/j.clineuro.2007.11.001

    Article  PubMed  Google Scholar 

  9. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. MacKenzie-Graham A et al (2009) Purkinje cell loss in experimental autoimmune encephalomyelitis. Neuroimage 48(4):637–651. https://doi.org/10.1016/j.neuroimage.2009.06.073

    Article  PubMed  Google Scholar 

  11. Mandolesi G et al (2012) GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis. Neurobiol Dis 46(2):414–424. https://doi.org/10.1016/j.nbd.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  12. Storch MK et al (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8(4):681–694. https://doi.org/10.1111/j.1750-3639.1998.tb00194.x

    Article  CAS  PubMed  Google Scholar 

  13. Archambault AS, Sim J, McCandless EE, Klein RS, Russell JH (2006) Region-specific regulation of inflammation and pathogenesis in experimental autoimmune encephalomyelitis. J Neuroimmunol 181(1–2):122–132. https://doi.org/10.1016/j.jneuroim.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  14. Schmitt C, Strazielle N, Ghersi-Egea J-F (2012) Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain. J Neuroinflammation 9:187. https://doi.org/10.1186/1742-2094-9-187

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jakovljevic M et al (2017) Down-regulation of NTPDase2 and ADP-sensitive P2 purinoceptors correlate with severity of symptoms during experimental autoimmune encephalomyelitis. Front Cell Neurosci 11:333. https://doi.org/10.3389/fncel.2017.00333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jakovljevic M et al (2019) Induction of NTPDase1/CD39 by reactive microglia and macrophages is associated with the functional state during EAE. Front Neurosci 13:410. https://doi.org/10.3389/fnins.2019.00410

    Article  PubMed  PubMed Central  Google Scholar 

  17. Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL (2023) Extracellular ATP: A powerful inflammatory mediator in the central nervous system. Neuropharmacology 224:109333. https://doi.org/10.1016/j.neuropharm.2022.109333

    Article  CAS  PubMed  Google Scholar 

  18. Matute C et al (2007) P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27(35):9525–9533. https://doi.org/10.1523/JNEUROSCI.0579-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dragić M, Mitrović N, Adžić M, Nedeljković N, Grković I (2021) Microglial- and astrocyte-specific expression of purinergic signaling components and inflammatory mediators in the rat hippocampus during trimethyltin-induced neurodegeneration. ASN Neuro 13:17590914211044882. https://doi.org/10.1177/17590914211044882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, Carvalho K (2021) Glial purinergic signaling in neurodegeneration. Front Neurol 12:654850. https://doi.org/10.3389/fneur.2021.654850

    Article  PubMed  PubMed Central  Google Scholar 

  21. Montilla A, Mata GP, Matute C, Domercq M (2020) Contribution of P2X4 receptors to CNS function and pathophysiology. Int J Mol Sci 21(15):5562. https://doi.org/10.3390/ijms21155562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vázquez-Villoldo N, Domercq M, Martín A, Llop J, Gómez-Vallejo V, Matute C (2014) P2X4 receptors control the fate and survival of activated microglia. Glia 62(2):171–184. https://doi.org/10.1002/glia.22596

    Article  PubMed  Google Scholar 

  23. Domercq M, Matute C (2019) Targeting P2X4 and P2X7 receptors in multiple sclerosis. Curr Opin Pharmacol 47:119–125. https://doi.org/10.1016/j.coph.2019.03.010

    Article  CAS  PubMed  Google Scholar 

  24. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):299–309. https://doi.org/10.1007/s002100000309

    Article  CAS  PubMed  Google Scholar 

  25. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fredholm BB, Ijzerman AP, Jacobson KA, Linden J, Müller CE (2011) International union of basic and clinical pharmacology LXXXI Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev 63(1):1–34. https://doi.org/10.1124/pr.110.003285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carman AJ, Mills JH, Krenz A, Kim D-G, Bynoe MS (2011) Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci 31(37):13272–13280. https://doi.org/10.1523/JNEUROSCI.3337-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139(6):1019–1055. https://doi.org/10.1111/jnc.13724

    Article  CAS  PubMed  Google Scholar 

  29. Borroto-Escuela DO, Wydra K, Filip M, Fuxe K (2018) A2AR-D2R heteroreceptor complexes in cocaine reward and addiction. Trends Pharmacol Sci 39(12):1008–1020. https://doi.org/10.1016/j.tips.2018.10.007

    Article  CAS  PubMed  Google Scholar 

  30. Antonioli L, Pacher P, Vizi ES, Haskó G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19(6):355–367. https://doi.org/10.1016/j.molmed.2013.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Magni G, Pedretti S, Audano M, Caruso D, Mitro N, Ceruti S (2020) Glial cell activation and altered metabolic profile in the spinal-trigeminal axis in a rat model of multiple sclerosis associated with the development of trigeminal sensitization. Brain Behav Immun 89:268–280. https://doi.org/10.1016/j.bbi.2020.07.001

    Article  CAS  PubMed  Google Scholar 

  32. Kovács Z, Dobolyi A, Kékesi KA, Juhász G (2013) 5’-nucleotidases, nucleosides and their distribution in the brain: pathological and therapeutic implications. Curr Med Chem 20(34):4217–4240. https://doi.org/10.2174/0929867311320340003

    Article  CAS  PubMed  Google Scholar 

  33. Safarzadeh E, Jadidi-Niaragh F, Motallebnezhad M, Yousefi M (2016) The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflamm Res 65(7):511–520. https://doi.org/10.1007/s00011-016-0936-z

    Article  CAS  PubMed  Google Scholar 

  34. Rajasundaram S (2018) Adenosine A2A Receptor Signaling in the Immunopathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 9:402. https://doi.org/10.3389/fimmu.2018.00402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mills JH et al (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105(27):9325–9330. https://doi.org/10.1073/pnas.0711175105

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lavrnja I et al (2015) Expression of a second ecto-5’-nucleotidase variant besides the usual protein in symptomatic phase of experimental autoimmune encephalomyelitis. J Mol Neurosci 55(4):898–911. https://doi.org/10.1007/s12031-014-0445-x

    Article  CAS  PubMed  Google Scholar 

  37. Dragić M et al (2021) Downregulation of CD73/A(2A)R-Mediated adenosine signaling as a potential mechanism of neuroprotective effects of theta-burst transcranial magnetic stimulation in acute experimental autoimmune encephalomyelitis. Brain Sci 11(6):736. https://doi.org/10.3390/brainsci11060736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duarte-Silva E, Ulrich H, Oliveira-Giacomelli Á, Hartung H-P, Meuth SG, Peixoto CA (2022) The adenosinergic signaling in the pathogenesis and treatment of multiple sclerosis. Front Immunol 13:946698. https://doi.org/10.3389/fimmu.2022.946698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Franco R, Navarro G (2018) Adenosine A(2A) Receptor antagonists in neurodegenerative diseases: huge potential and huge challenges. Front Psychiatry 9:68. https://doi.org/10.3389/fpsyt.2018.00068

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bijelić DD et al (2020) Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling. J Neurosci Res 98(11):2317–2332. https://doi.org/10.1002/jnr.24699

    Article  CAS  PubMed  Google Scholar 

  41. Lavrnja I et al (2008) Ribavirin ameliorates experimental autoimmune encephalomyelitis in rats and modulates cytokine production. Int Immunopharmacol 8(9):1282–1290. https://doi.org/10.1016/j.intimp.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  42. Dragic M et al (2022) Altered topographic distribution and enhanced neuronal expression of adenosine-metabolizing enzymes in rat hippocampus and cortex from early to late adulthood. Neurochem Res 47:1637. https://doi.org/10.1007/s11064-022-03557-5

    Article  CAS  PubMed  Google Scholar 

  43. Dragic M et al (2020) Theta burst stimulation ameliorates symptoms of experimental autoimmune encephalomyelitis and attenuates reactive gliosis. Brain Res Bull 162:208–217. https://doi.org/10.1016/j.brainresbull.2020.06.013

    Article  CAS  PubMed  Google Scholar 

  44. Kipp M, Nyamoya S, Hochstrasser T, Amor S (2017) Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 27(2):123–137. https://doi.org/10.1111/bpa.12454

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hamilton AM et al (2019) Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. Sci Rep 9(1):8488. https://doi.org/10.1038/s41598-019-44682-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565:23–29. https://doi.org/10.1016/j.neulet.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  47. Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16(5):249–263. https://doi.org/10.1038/nrn3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haas J et al (2020) The choroid plexus is permissive for a preactivated antigen-experienced memory B-cell subset in multiple sclerosis. Front Immunol 11:618544. https://doi.org/10.3389/fimmu.2020.618544

    Article  CAS  PubMed  Google Scholar 

  49. Strominger I et al (2018) The choroid plexus functions as a niche for T-cell stimulation within the central nervous system. Front Immunol 9:1066. https://doi.org/10.3389/fimmu.2018.01066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001) Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 52(1):112–129. https://doi.org/10.1002/1097-0029(20010101)52:1%3c112::AID-JEMT13%3e3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  51. Zheng W et al (2022) Choroid plexus-selective inactivation of adenosine A(2A) receptors protects against T cell infiltration and experimental autoimmune encephalomyelitis. J Neuroinflammation 19(1):52. https://doi.org/10.1186/s12974-022-02415-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ye M et al (2023) Adenosine A(2A) receptor controls the gateway of the choroid plexus. Purinergic Signal 19(1):135–144. https://doi.org/10.1007/s11302-022-09847-5

    Article  CAS  PubMed  Google Scholar 

  53. Junqueira SC et al (2017) Inosine, an endogenous purine nucleoside, suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis: a role for A2A adenosine receptor. Mol Neurobiol 54(5):3271–3285. https://doi.org/10.1007/s12035-016-9893-3

    Article  CAS  PubMed  Google Scholar 

  54. Nedeljkovic N (2019) Complex regulation of ecto-5’-nucleotidase/CD73 and A(2A)R-mediated adenosine signaling at neurovascular unit: A link between acute and chronic neuroinflammation. Pharmacol Res 144:99–115. https://doi.org/10.1016/j.phrs.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  55. Varani K et al (2010) A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson’s disease. FASEB J 24(2):587–598. https://doi.org/10.1096/fj.09-141044

    Article  CAS  PubMed  Google Scholar 

  56. Jackson EK (2011) The 2’,3’-cAMP-adenosine pathway. Am J Physiol Renal Physiol 301(6):F1160–F1167. https://doi.org/10.1152/ajprenal.00450.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Verrier JD et al (2011) Expression of the 2’,3’-cAMP-adenosine pathway in astrocytes and microglia. J Neurochem 118(6):979–987. https://doi.org/10.1111/j.1471-4159.2011.07392.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fern R, Waxman SG, Ransom BR (1994) Modulation of anoxic injury in CNS white matter by adenosine and interaction between adenosine and GABA. J Neurophysiol 72(6):2609–2616. https://doi.org/10.1152/jn.1994.72.6.2609

    Article  CAS  PubMed  Google Scholar 

  59. Verrier JD et al (2013) Role of CNPase in the oligodendrocytic extracellular 2’,3’-cAMP-adenosine pathway. Glia 61(10):1595–1606. https://doi.org/10.1002/glia.22523

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fastbom J, Pazos A, Palacios JM (1987) The distribution of adenosine A1 receptors and 5’-nucleotidase in the brain of some commonly used experimental animals. Neuroscience 22(3):813–826. https://doi.org/10.1016/0306-4522(87)92961-7

    Article  CAS  PubMed  Google Scholar 

  61. Antonioli L, Blandizzi C, Pacher P, Haskó G (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13(12):842–857. https://doi.org/10.1038/nrc3613

    Article  CAS  PubMed  Google Scholar 

  62. Tsutsui S, Vergote D, Shariat N, Warren K, Ferguson SSG, Power C (2008) Glucocorticoids regulate innate immunity in a model of multiple sclerosis: reciprocal interactions between the A1 adenosine receptor and beta-arrestin-1 in monocytoid cells. FASEB J 22(3):786–796. https://doi.org/10.1096/fj.07-9002com

    Article  CAS  PubMed  Google Scholar 

  63. Johnston JB et al (2001) Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol 49(5):650–658

    Article  CAS  PubMed  Google Scholar 

  64. Santiago AR et al (2014) Role of microglia adenosine A(2A) receptors in retinal and brain neurodegenerative diseases. Mediators Inflamm 2014:465694. https://doi.org/10.1155/2014/465694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haskó G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7(9):759–770. https://doi.org/10.1038/nrd2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei W et al (2013) Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol 190(1):138–146. https://doi.org/10.4049/jimmunol.1103721

    Article  CAS  PubMed  Google Scholar 

  67. Liu G et al (2018) Adenosine binds predominantly to adenosine receptor A1 subtype in astrocytes and mediates an immunosuppressive effect. Brain Res 1700:47–55. https://doi.org/10.1016/j.brainres.2018.06.021

    Article  CAS  PubMed  Google Scholar 

  68. Ciccarelli R et al (2007) Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes. Mol Pharmacol 71(5):1369–1380. https://doi.org/10.1124/mol.106.031617

    Article  CAS  PubMed  Google Scholar 

  69. D’Alimonte I et al (2007) Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation. Neurosci Lett 418(1):66–71. https://doi.org/10.1016/j.neulet.2007.02.061

    Article  CAS  PubMed  Google Scholar 

  70. Björklund O, Shang M, Tonazzini I, Daré E, Fredholm BB (2008) Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage. Eur J Pharmacol 596(1–3):6–13. https://doi.org/10.1016/j.ejphar.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  71. Tsutsui S et al (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24(6):1521–1529. https://doi.org/10.1523/JNEUROSCI.4271-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Ministry of Science, Technological Development and Innovation of Republic of Serbia, (Grant Nos. 451–03-68/2023–14/200178) and University of Defence (Grant No. MFVMA/02/24-26).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Milorad Dragic and Nadezda Nedeljkovic designed the study. Dejan Stevic, Andjela Stekic, Ivana Stevanovic, Milica Zeljkovic Jovanovic and Jelena Stanojevic participated in a preparation of brain tissue sections for histological and immunohistological study. Milorad Dragic, Andjela Stekic, Marina Anastasov, Danica Popovic and Milica Zeljkovic Jovanovic performed immunohistochemical staining, while Milorad Dragic, Dejan Stevic and Andjela Stekic performed confocal microscopy. Dejan Stevic, Andjela Stekic and Milica Zeljkovic Jovanovic prepared crude membrane fraction (P2) and preformed enzyme assays. Dejan Stevic, Ivana Stevanovic and Milica Zeljkovic Jovanovic, Tamara Dokmanovic, Marina Anastasov and Danica Popovic performed Western blotting and quantification. Milorad Dragic and Nadezda Nedeljkovic wrote the manuscript. All authors discussed and edited the manuscript and read and approved the final version.

Corresponding authors

Correspondence to Nadezda Nedeljkovic or Milorad Dragic.

Ethics declarations

Ethics Approval

All experimental procedures were performed in accordance with EU Directive 2010/63 and approved by the Ethics Committee for the Use of Laboratory Animals of the Faculty of Biology, University of Belgrade, Belgrade, Republic of Serbia (Application number: 119–01-4/11/2020–09).

Competing Interests

The authors have no financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stekic, A., Stevic, D., Dokmanovic, T. et al. Intrinsic ecto-5'-Nucleotidase/A1R Coupling may Confer Neuroprotection to the Cerebellum in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04174-9

Keywords

Navigation