Skip to main content
Log in

Molecular epidemiology and resistance mechanisms of tigecycline-non-susceptible Acinetobacter baumannii isolated from a tertiary care hospital in Chongqing, China

  • Brief Report
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

We studied 34 isolates of Tigecycline-Non-Susceptible A. baumannii (TNAB) obtained from clinical specimens at a large tertiary care hospital in Chongqing, China. These 34 strains belonged to 8 different clones including ST195 (35.3%) and ST208 (17.7%). EBURST analysis found that these 8 ST types belonged to the Clonal Complex 92. Tigecycline resistance-associated genes adeR, adeS, adeL, adeN, rrf, rpsJ, and trm were detected in most strains. The expression level of the resistance-nodulation-cell division (RND) efflux pumps in TNAB strains was higher than the reference strain ATCC19606. 58.8% of strains had a decrease in the tigecycline minimum inhibitory concentration (MIC) after the addition of carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The TNAB strains in our hospital have a high degree of affinity and antibiotic resistance. Regular surveillance should be conducted to prevent outbreaks of TNAB epidemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The datasets in the current study are available from the corresponding author upon reasonable request.

References

  1. Novovic K, Jovcic B (2023) Colistin Resistance in Acinetobacter baumannii: Molecular mechanisms and Epidemiology. Antibiot (Basel) 12(3). https://doi.org/10.3390/antibiotics12030516

  2. Zhang J, Xie J, Li H, Wang Z, Yin Y, Wang S, Chen H, Wang Q, Wang H (2022) Genomic and phenotypic evolution of Tigecycline-Resistant Acinetobacter baumannii in critically ill patients. Microbiol Spectr 10(1):e0159321. https://doi.org/10.1128/spectrum.01593-21

    Article  PubMed  Google Scholar 

  3. Visca P, Seifert H, Towner KJ (2011) Acinetobacter infection–an emerging threat to human health. IUBMB Life 63(12):1048–1054. https://doi.org/10.1002/iub.534

    Article  CAS  PubMed  Google Scholar 

  4. Paterson DL, Harris PN (2015) Editorial commentary: the new Acinetobacter equation: hypervirulence plus antibiotic resistance equals big trouble. Clin Infect Dis 61(2):155–156. https://doi.org/10.1093/cid/civ227

    Article  PubMed  Google Scholar 

  5. Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F (2022) Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis 41(7):1003–1022. https://doi.org/10.1007/s10096-020-04121-1

    Article  CAS  PubMed  Google Scholar 

  6. Deng M, Zhu MH, Li JJ, Bi S, Sheng ZK, Hu FS, Zhang JJ, Chen W, Xue XW, Sheng JF, Li LJ (2014) Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob Agents Chemother 58(1):297–303. https://doi.org/10.1128/AAC.01727-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nigro SJ, Hall RM (2012) Antibiotic resistance islands in A320 (RUH134), the reference strain for Acinetobacter baumannii global clone 2. J Antimicrob Chemother 67(2):335–338. https://doi.org/10.1093/jac/dkr447

    Article  CAS  PubMed  Google Scholar 

  8. Viehman JA, Nguyen MH, Doi Y (2014) Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 74(12):1315–1333. https://doi.org/10.1007/s40265-014-0267-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun JR, Chan MC, Chang TY, Wang WY, Chiueh TS (2010) Overexpression of the adeB gene in clinical isolates of tigecycline-nonsusceptible Acinetobacter baumannii without insertion mutations in adeRS. Antimicrob Agents Chemother 54(11):4934–4938. https://doi.org/10.1128/AAC.00414-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang YS, Chen HY, Hsu WJ, Chou YC, Perng CL, Shang HS, Hsiao YT, Sun JR, group As (2019) Overexpression of AdeABC efflux pump associated with tigecycline resistance in clinical Acinetobacter nosocomialis isolates. Clin Microbiol Infect 25 (4):512 e511-512 e516 https://doi.org/10.1016/j.cmi.2018.06.012

  11. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B (2010) Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 54(10):4389–4393. https://doi.org/10.1128/AAC.00155-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jo J, Ko KS (2021) Tigecycline Heteroresistance and Resistance mechanism in clinical isolates of Acinetobacter baumannii. Microbiol Spectr 9(2):e0101021. https://doi.org/10.1128/Spectrum.01010-21

    Article  PubMed  Google Scholar 

  13. Hua X, He J, Wang J, Zhang L, Zhang L, Xu Q, Shi K, Leptihn S, Shi Y, Fu X, Zhu P, Higgins PG, Yu Y (2021) Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and Rrf. Emerg Microbes Infect 10(1):1404–1417. https://doi.org/10.1080/22221751.2021.1948804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Q, Li X, Zhou H, Jiang Y, Chen Y, Hua X, Yu Y (2014) Decreased susceptibility to tigecycline in Acinetobacter baumannii mediated by a mutation in trm encoding SAM-dependent methyltransferase. J Antimicrob Chemother 69(1):72–76. https://doi.org/10.1093/jac/dkt319

    Article  CAS  PubMed  Google Scholar 

  15. He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, Ke Y, Ji Q, Wei R, Liu Z, Shen Y, Wang G, Sun L, Lei L, Lv Z, Li Y, Pang M, Wang L, Sun Q, Fu Y, Song H, Hao Y, Shen Z, Wang S, Chen G, Wu C, Shen J, Wang Y (2019) Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol 4(9):1450–1456. https://doi.org/10.1038/s41564-019-0445-2

    Article  CAS  PubMed  Google Scholar 

  16. Zheng XR, Zhu JH, Zhang J, Cai P, Sun YH, Chang MX, Fang LX, Sun J, Jiang HX (2020) A novel plasmid-borne tet(X6) variant co-existing with blaNDM-1 and blaOXA-58 in a chicken Acinetobacter baumannii isolate. J Antimicrob Chemother 75(11):3397–3399. https://doi.org/10.1093/jac/dkaa342

    Article  CAS  PubMed  Google Scholar 

  17. Hsieh YC, Wu JW, Chen YY, Quyen TLT, Liao WC, Li SW, Chen YC, Pan YJ (2021) An outbreak of tet(X6)-Carrying tigecycline-resistant Acinetobacter baumannii isolates with a New Capsular type at a hospital in Taiwan. Antibiot (Basel) 1010. https://doi.org/10.3390/antibiotics10101239

  18. Jiang M, Chen X, Liu S, Zhang Z, Li N, Dong C, Zhang L, Wu H, Zhao S (2021) Epidemiological analysis of Multidrug-Resistant Acinetobacter baumannii isolates in a Tertiary Hospital over a 12-Year period in China. Front Public Health 9:707435. https://doi.org/10.3389/fpubh.2021.707435

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jiang L, Liang Y, Yao W, Ai J, Wang X, Zhao Z (2019) Molecular epidemiology and genetic characterisation of carbapenem-resistant Acinetobacter baumannii isolates from Guangdong Province, South China. J Glob Antimicrob Resist 17:84–89. https://doi.org/10.1016/j.jgar.2018.11.002

    Article  PubMed  Google Scholar 

  20. Qu J, Du Y, Yu R, Lu X (2016) The First Outbreak Caused by Acinetobacter baumannii ST208 and ST195 in China. Biomed Res Int 2016:9254907 https://doi.org/10.1155/2016/9254907

  21. Ying J, Lu J, Zong L, Li A, Pan R, Cheng C, Li K, Chen L, Ying J, Tou H, Zhu C, Xu T, Yi H, Li J, Ni L, Xu Z, Bao Q, Li P (2016) Molecular epidemiology and characterization of genotypes of Acinetobacter baumannii isolates from regions of South China. Jpn J Infect Dis 69(3):180–185. https://doi.org/10.7883/yoken.JJID.2014.544

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81572055).

Author information

Authors and Affiliations

Authors

Contributions

Yun Xia and Jiajia Liao contributed to the study conception and design. Material preparation, data collection and were performed by Shengli Luo, Shiyu Tang, Yuqiong Li, and Qi Han. Data analysis and curation were conducted by Jinzhu Huang, Peiwen Xia, Bingxue Yang, and Zijun Dang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yun Xia.

Ethics declarations

Competing interests

All of the authors declare no conflict of interest in this study.

Institutional review board statement

The study was conducted in accordance with the Declaration of Helsinki and approved by the medical center’s ethical committee of the First Affiliated Hospital of Chongqing Medical University.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Huang, J., Xia, P. et al. Molecular epidemiology and resistance mechanisms of tigecycline-non-susceptible Acinetobacter baumannii isolated from a tertiary care hospital in Chongqing, China. Eur J Clin Microbiol Infect Dis (2024). https://doi.org/10.1007/s10096-024-04832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10096-024-04832-9

Keywords

Navigation