Skip to main content

Advertisement

Log in

Grafted barley husk/poly (vinyl alcohol)/starch composite films: effect of fatty acid chain length and grafted barley husk loading

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The effect of incorporation of barley husk (BH) grafted with different fatty acids (lauric acid: LBH; palmitic acid: PBH; arachidic acid: ABH) on the physicochemical properties of cross-linked PVA/starch based composite films was studied at different loadings (0.2–2)%. Surface morphology of the films showed that grafted BH dispersed well within the matrix as compared to BH enabling them to provide the greatest reinforcing effect. Composite films containing grafted BH showed higher tensile strength, water resistant properties, thermal stability as well as barrier properties compared to composite films containing BH. At optimum loading (1%), tensile strength of the composite film, containing ABH, was 22.9 MPa, and 23.5% and 31.6% higher than films containing LBH (17.4 MPa) and PBH (18.54 MPa), respectively. Composite films prepared with ABH exhibited the highest values of water contact angle, water vapor, and oxygen permeability among all composite films owing to the incorporation of longest hydrophobic aliphatic chain and provides more hindrance for transmission. The activation energy values of thermal degradation for composite film directly indicate their thermal stability were calculated as 203.37, 222.62 and 366.52 kJ at 1% loading of LBH, PBH, and ABH, respectively. Thus, composite film containing ABH at 1% showed maximum improvement in physicochemical properties followed by composite films containing 1% PBH and LBH. This study provides the alternatives for choosing the most effective composite film, which can be a nature-friendly substitute for non-degradable packaging films and it may help to maintain the circular economy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matthews C, Moran F, Jaiswal AK (2021) A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J Clean Prod 283:125263

    Article  Google Scholar 

  2. Rafey A, Pal K, Bohre A, Modak A, Pant KK (2023) A state-of-the-art review on the technological advancements for the sustainable management of plastic waste in consort with the generation of energy and value-added chemicals. Catalysts 13:420

    Article  CAS  Google Scholar 

  3. Deng S, Liao J, Wu H, Cao M, Fan M, Essawy H, Du G, Zhou X (2023) Multifunctional modification of biodegradable casein-microcrystalline cellulose composite film with UV-absorbing property using wood bark extract. Indi Crops Prod 192:116080

    Article  CAS  Google Scholar 

  4. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  5. Sid S, Mor RS, Kishore A, Sharanagat VS (2021) Bio-sourced polymers as alternatives to conventional food packaging materials: a review. Trends Food Sci Technol 115:87–104

    Article  CAS  Google Scholar 

  6. Sonker AK, Teotia AK, Kumar A, Nagarale RK, Verma V (2017) Development of polyvinyl alcohol based high strength biocompatible composite films. Macromol Chem Phys 218:1700130

    Article  Google Scholar 

  7. Mittal A, Garg S, Kohli D, Maiti M, Jana AK, Bajpai S (2016) Effect of cross-linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films. Carbohydr Polym 151:926–938

    Article  CAS  PubMed  Google Scholar 

  8. Priya B, Gupta VK, Pathania D, Singha AS (2014) Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109:171–179

    Article  CAS  PubMed  Google Scholar 

  9. Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydr Polym 101:11–19

    Article  CAS  PubMed  Google Scholar 

  10. Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM (2020) Preparation and characterization of cornhusk/sugar palm fiber reinforced Cornstarch-based hybrid composites. J Mater Res Technol 9:200–211

    Article  CAS  Google Scholar 

  11. Lani NS, Ngadi N, Johari A, Jusoh M (2014) Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. J Nanomater 2014:702538

    Article  Google Scholar 

  12. Kaith BS, Jindal R, Maiti M (2009) Graft copolymerization of methylmethacrylate onto acetylated Saccharum spontaneum L. Using FAS-KPS as a redox initiator and evaluation of physical, chemical, and thermal properties. Int J Polym Anal Charact 14:210–230

    Article  CAS  Google Scholar 

  13. Kaith BS, Jindal R, Jana AK, Maiti M (2010) Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers–Evaluation of thermal, physico-chemical and mechanical properties. Bioresour Technol 101:6843–6851

    Article  CAS  PubMed  Google Scholar 

  14. Mittal A, Garg S, Bajpai S (2019) Lauric acid-grafted barley (Hordeumvulagare L.) husk for application in biocomposite films: optimization method in synthesis and characterization. Iran Polym J 28:379–390

    Article  CAS  Google Scholar 

  15. Ighwela KA, Ahmad AB, Abol-Munafi AB (2012) Production of cellulose from barley husks as a partial ingredient of formulated diet for Tilapia fingerlings. J Boil Agric Health 2:19–24

    Google Scholar 

  16. Bisanda ETN, Ansell MP (1991) The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Compos Sci Technol 41:165–178

    Article  CAS  Google Scholar 

  17. Beniwal P, Toor AP (2023) Advancement in tensile properties of polylactic acid composites reinforced with rice straw fibers. Ind Crops Prod 192:116098

    Article  CAS  Google Scholar 

  18. Mittal A, Garg S, Bajpai S (2019) The influence of fatty acid chain length on the chemical, physical and morphological properties of the grafted barley husk for application in biocomposites. Polym Test 78:105937

    Article  Google Scholar 

  19. Kohli D, Garg S, Jana AK, Maiti M (2017) Synthesis of graft copolymers for green composite films and optimization of reaction parameters using Taguchi (L16) orthogonal array. Indian Chem Eng 59:136–158

    Article  CAS  Google Scholar 

  20. Popescu MC, Totolin M, Tibirna CM, Sdrobis A, Stevanovic T, Vasile C (2011) Grafting of softwood kraft pulps fibers with fatty acids under cold plasma conditions. Int J Biol Macromol 48:326–335

    Article  CAS  PubMed  Google Scholar 

  21. Dolez PI, Arfaoui MA, Dubé M, David É (2017) Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Procedia Eng 200:81–88

    Article  CAS  Google Scholar 

  22. El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167

    Article  PubMed  Google Scholar 

  23. Wittaya-areekul S, Prahsarn C (2006) Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings. Int J Pharm 313:123–128

    Article  CAS  PubMed  Google Scholar 

  24. Mittal A, Garg S, Bajpai S (2020) Thermal decomposition kinetics and properties of PVA/starch composite films reinforced with grafted barley husk. Carbohydr Polym 240:116225

    Article  CAS  PubMed  Google Scholar 

  25. Garg S, Jana AK (2011) Effect of propylation of starch with different degrees of substitution on the properties and characteristics of starch-low density polyethylene blend films. J Appl Polym Sci 122:2197–2208

    Article  CAS  Google Scholar 

  26. Flynn JH, Wall LA (1996) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Polym Lett Ed 4:323–328

    Article  Google Scholar 

  27. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci C 6:183–195

    Article  Google Scholar 

  28. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  29. Coats AW, Redfern JP (1963) Thermogravimetric analysis: a review. Analyst 88:906–924

    Article  CAS  Google Scholar 

  30. Gulati K, Lal S, Arora S (2019) Synthesis and characterization of PVA/Starch/CMC composite films reinforced with walnut (Juglans regia L.) shell flour. SN Appl Sci 1:1–12

    Article  CAS  Google Scholar 

  31. Singha AS, Rana AK (2012) Preparation and characterization of graft copolymerized Cannabis indica L. fiber-reinforced unsaturated polyester matrix-based biocomposites. J Reinf Plast Compos 31:1538–1553

    Article  CAS  Google Scholar 

  32. Kalia S, Kumar A, Kaith BS (2011) Sunn hemp cellulose graft copolymers polyhydroxybutyrate composites: morphological and mechanical studies. Adv Mater Lett 2:17–25

    Article  CAS  Google Scholar 

  33. Goriparthi BK, Suman KNS, Mohan Rao N (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A 43:1800–1808

    Article  CAS  Google Scholar 

  34. Willberg-Keyriläinen P, Vartiainen J, Harlin A, Ropponen J (2017) The effect of side-chain length of cellulose fatty acid esters on their thermal, barrier and mechanical properties. Cellulose 24:505–517

    Article  Google Scholar 

  35. Brown B, Aaron M (2001) In: Smith J (Ed) The rise of modern genomics, 3rd edn. Wiley, New York

  36. Mousavinasab SM (2011) In: Croatia R (Ed) Metal, Ceramic and Polymeric Composites for Various Uses.Intech Open, London

  37. Huang F, Wu X, Yu Y, Lu Y, Chen Q (2017) Acylation of cellulose nanocrystals with acids/trifluoroacetic anhydride and properties of films from esters of CNCs.Carbohydr Polym 155:525–534 https://doi.org/10.1016/j.carbpol.2016.09.010

  38. Mittal A, Garg S, Bajpai S (2020) Fabrication and characteristics of poly (vinyl alcohol)-starch-cellulosic material based biodegradable composite film for packaging application. Mater Today Proc 21:1577–2582

    Article  CAS  Google Scholar 

  39. Fendler A, Villanueva MP, Gimenez E, Lagarón JM (2007) Characterization of the barrier properties of composites of HDPE and purified cellulose fibers. Cellulose 14:427–438

    Article  CAS  Google Scholar 

  40. Sheik S, Nagaraja GK (2019) In: Abbas M, Jeon HY (ed) Generation, Development and Modifications of Natural Fibers.Intech Open, London

  41. Sharma S, Zhang X, Nair SS, Ragauskas A, Zhu J, Deng Y (2014) Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Adv 4(85):45136–45142

    Article  CAS  Google Scholar 

  42. Canché-Escamilla G, Cauich-Cupul JI, Mendizábal E, Puig JE, Vázquez-Torres H, Herrera-Franco PJ (1999) Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Compos A 30:349–359

    Article  Google Scholar 

  43. Burnham AK, Dinh LN (2007) A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim 89:479–490

    Article  CAS  Google Scholar 

  44. Lv S, Zhang Y, Tan H (2019) Thermal and thermo-oxidative degradation kinetics and characteristics of poly (lactic acid) and its composites. Waste Manag 87:335–344

    Article  CAS  PubMed  Google Scholar 

  45. Fitch-Vargas PR, Camacho-Hernández IL, Martínez-Bustos F, Islas-Rubio AR, Carrillo-Cañedo KI, Calderón-Castro A, Jacobo-Valenzuela N, Carrillo-López A, Delgado-Nieblas CI, Aguilar-Palazuelos E (2019) Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber. Carbohydr Polym 219:378–386

    Article  CAS  PubMed  Google Scholar 

  46. Ooi ZX, Ismail H, Bakar AA, Aziz NAA (2012) Properties of the cross-linked plasticized biodegradable poly (vinyl alcohol)/rambutan skin waste flour blends. J Appl Polym Sci 125:1127–1135

    Article  CAS  Google Scholar 

  47. Mukherjee A, Datta D, Halder G (2019) Synthesis and characterization of rice-straw-based grafted polymer composite by free radical copolymerization. Indian Chem Eng 61:105–119

    Article  CAS  Google Scholar 

  48. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2019) Application of polymethylmethacrylate-grafted cellulose as reinforcement for compatibilized polylactic acid/natural rubber blends. Carbohydr Polym 213:50–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Ministry of Human Resource Development, Govt. of India for rendering fellowship, NIT Jalandhar and Vellore Institute of Technology for their financial and infrastructural support for carrying out the present work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Dr. Aanchal Mittal, Dr. Sangeeta Garg, and Dr. Shailendra Bajpai; methodology: Aanchal Mittal; formal analysis and investigation: Aanchal Mittal; writing—original draft preparation: Aanchal Mittal; writing—review and editing: Dr. Sangeeta Garg; supervision: Dr. Sangeeta Garg and Dr. Shailendra Bajpai.

Corresponding author

Correspondence to Aanchal Mittal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, A., Garg, S. & Bajpai, S. Grafted barley husk/poly (vinyl alcohol)/starch composite films: effect of fatty acid chain length and grafted barley husk loading. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01311-y

Keywords

Navigation