Skip to main content
Log in

Adsorption of anionic dye onto homoionic montmorillonite: effect of the exchangeable cation on the adsorption

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the adsorption of anionic dye represented by Congo red (CR) using adsorbents prepared starting from Wyoming montmorillonite (Mt). The first group of adsorbents named homoionic montmorillonite (HMt) was obtained using Ca2+, Mg2+, Na+, and K+, while the second group called modified montmorillonite (Mt-CTA) was acquired after intercalation of cetyltrimethylammonium (CTA+) into HMt. The obtained XRD results analysis revealed that Mt-K-2CEC gave a maximal d001 value of 19.07 Å due to a relatively high amount of CTA+ cations in the interlayer spaces of Mt-K. From BET measurements, total pore volume, average pore size, and the BET surface area decreased with the increase in CTA+ loading on montmorillonite from 1 to 2CEC, except for Mt-Ca. On the other hand, adsorption kinetics data showed accordance with the pseudo-second-order equation, and the adsorption isotherm was in good agreement with the Langmuir model. Up to 274.48 and 258.46 mg g−1 of the dissolved CR were adsorbed by Mt-Mg and Mt-Na-2CEC, respectively. Finally, as shown in the FTIR spectra and SEM analyses, the adsorption of organo-clays was explained as a chemical adsorption process between the groups –N=N– and –SO3 of CR and CTA+. Hence, the use of these adsorbent materials to remove CR dye is highly beneficial due to their abundance and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Acemioǧlu, Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. J. Colloid Interface Sci. 274, 371–379 (2004). https://doi.org/10.1016/j.jcis.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  2. C. Park, M. Lee, B. Lee, S.W. Kim, H.A. Chase, J. Lee, S. Kim, Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem. Eng. J. 36, 59–65 (2007). https://doi.org/10.1016/j.bej.2006.06.007

    Article  CAS  Google Scholar 

  3. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255 (2001). https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  PubMed  Google Scholar 

  4. K. Golka, S. Kopps, Z.W. Myslak, Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol. Lett. 151, 203–210 (2004). https://doi.org/10.1016/j.toxlet.2003.11.016

    Article  CAS  PubMed  Google Scholar 

  5. C. Osagie, A. Othmani, S. Ghosh, A. Malloum, Z. Kashitarash Esfahani, S. Ahmadi, Dyes adsorption from aqueous media through the nanotechnology: a review. J. Mater. Res. Technol. 14, 2195–2218 (2021). https://doi.org/10.1016/j.jmrt.2021.07.085

    Article  CAS  Google Scholar 

  6. S. Benkhaya, S. M’rabet, A. El Harfi, Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6, e03271 (2020). https://doi.org/10.1016/j.heliyon.2020.e03271

    Article  PubMed  PubMed Central  Google Scholar 

  7. O.I. Lipskikh, E.I. Korotkova, Y.P. Khristunova, J. Barek, B. Kratochvil, Sensors for voltammetric determination of food azo dyes: a critical review. Electrochim. Acta 260, 974–985 (2018). https://doi.org/10.1016/j.electacta.2017.12.027

    Article  CAS  Google Scholar 

  8. D. Rawat, R.S. Sharma, S. Karmakar, L.S. Arora, V. Mishra, Ecotoxic potential of a presumably non-toxic azo dye. Ecotoxicol. Environ. Saf. 148, 528–537 (2018). https://doi.org/10.1016/j.ecoenv.2017.10.049

    Article  CAS  PubMed  Google Scholar 

  9. G. Sharma, T. Saad, P.S. Kumar, S. Bhogal, A. Kumar, S. Sharma, M. Naushad, Z.A. Alothman, F.J. Stadler, Utilization of Ag2O–Al2O3–ZrO2 decorated onto rGO as adsorbent for the removal of Congo red from aqueous solution. Environ. Res. 197, 111179 (2021). https://doi.org/10.1016/j.envres.2021.111179

    Article  CAS  PubMed  Google Scholar 

  10. Y.O. Khaniabadi, H. Basiri, H. Nourmoradi, M.J. Mohammadi, A.R. Yari, S. Sadeghi, A. Amrane, Adsorption of Congo red dye from aqueous solutions by montmorillonite as a low-cost adsorbent. Int. J. Chem. React. Eng. 16, 20160203 (2018). https://doi.org/10.1515/ijcre-2016-0203

    Article  CAS  Google Scholar 

  11. L. Wang, A. Wang, Adsorption characteristics of Congo red onto the chitosan/montmorillonite nanocomposite. J. Hazard. Mater. 147, 979–985 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.145

    Article  CAS  PubMed  Google Scholar 

  12. A.A. Lugo-Ruiz, M.J. Paz-Ruiz, S.J. Bailón-Ruiz, Photodegradation of organic dyes in single and multi-component in the presence of titanium dioxide nanoparticles. MRS Adv. 7, 255–259 (2022). https://doi.org/10.1557/S43580-022-00274-7

    Article  CAS  Google Scholar 

  13. R. El Haouti, H. Ouachtak, A. El Guerdaoui, A. Amedlous, E. Amaterz, R. Haounati, A.A. Addi, F. Akbal, N. El Alem, M.L. Taha, Cationic dyes adsorption by Na-montmorillonite nano clay: experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. J. Mol. Liq. 290, 111139 (2019). https://doi.org/10.1016/j.molliq.2019.111139

    Article  CAS  Google Scholar 

  14. M. Ma, H. Ying, F. Cao, Q. Wang, N. Ai, Adsorption of Congo red on mesoporous activated carbon prepared by CO2 physical activation. Chin. J. Chem. Eng. 28, 1069–1076 (2020). https://doi.org/10.1016/j.cjche.2020.01.016

    Article  CAS  Google Scholar 

  15. S. Liu, Y. Ding, P. Li, K. Diao, X. Tan, F. Lei, Y. Zhan, Q. Li, B. Huang, Z. Huang, Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N, N-dimethyl dehydroabietylamine oxide. Chem. Eng. J. 248, 135–144 (2014). https://doi.org/10.1016/j.cej.2014.03.026

    Article  CAS  Google Scholar 

  16. P. Koohi, A. Rahbar-kelishami, H. Shayesteh, Efficient removal of Congo red dye using Fe3O4/NiO nanocomposite: synthesis and characterization. Environ. Technol. Innov. 23, 101559 (2021). https://doi.org/10.1016/j.eti.2021.101559

    Article  CAS  Google Scholar 

  17. M.M.F. Silva, M.M. Oliveira, M.C. Avelino, M.G. Fonseca, R.K.S. Almeida, E.C. Silva Filho, Adsorption of an industrial anionic dye by modified-KSF-montmorillonite: evaluation of the kinetic, thermodynamic and equilibrium data. Chem. Eng. J. 203, 259–268 (2012). https://doi.org/10.1016/j.cej.2012.07.009

    Article  CAS  Google Scholar 

  18. Y. Park, G.A. Ayoko, R.L. Frost, Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. J. Colloid Interface Sci. 354, 292–305 (2011). https://doi.org/10.1016/j.jcis.2010.09.068

    Article  CAS  PubMed  Google Scholar 

  19. L. Cottet, C.A.P. Almeida, N. Naidek, M.F. Viante, M.C. Lopes, N.A. Debacher, Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Appl. Clay Sci. 95, 25–31 (2014). https://doi.org/10.1016/j.clay.2014.03.023

    Article  CAS  Google Scholar 

  20. M.Á. López Zavala, B. Frías Bouchez, Montmorillonite-perlite-iron ceramic membranes for the adsorption/removal of As(III) and other constituents from surface water. Ceram. Int. 48, 31695–31704 (2022). https://doi.org/10.1016/j.ceramint.2022.07.091

    Article  CAS  Google Scholar 

  21. X. Ren, Z. Zhang, H. Luo, B. Hu, Z. Dang, C. Yang, L. Li, Adsorption of arsenic on modified montmorillonite. Appl. Clay Sci. 97–98, 17–23 (2014). https://doi.org/10.1016/j.clay.2014.05.028

    Article  CAS  Google Scholar 

  22. F. López Arbeloa, R. Chaudhuri, T. Arbeloa López, I. López Arbeloa, Aggregation of rhodamine 3B adsorbed in Wyoming montmorillonite aqueous suspensions. J. Colloid Interface Sci. 246, 281–287 (2002). https://doi.org/10.1006/jcis.2001.8074

    Article  CAS  PubMed  Google Scholar 

  23. E. Errais, J. Duplay, M. Elhabiri, M. Khodja, R. Ocampo, R. Baltenweck-Guyot, F. Darragi, Anionic RR120 dye adsorption onto raw clay: surface properties and adsorption mechanism. Colloids Surf A Physicochem Eng Asp 403, 69–78 (2012). https://doi.org/10.1016/j.colsurfa.2012.03.057

    Article  CAS  Google Scholar 

  24. Y. Li, X. Hu, X. Liu, Y. Zhang, Q. Zhao, P. Ning, S. Tian, Adsorption behavior of phenol by reversible surfactant-modified montmorillonite: mechanism, thermodynamics, and regeneration. Chem. Eng. J. 334, 1214–1221 (2018). https://doi.org/10.1016/j.cej.2017.09.140

    Article  CAS  Google Scholar 

  25. A. Ahmed, Y. Chaker, E.H. Belarbi, O. Abbas, J.N. Chotard, H.B. Abassi, A.N. Van Nhien, M. El Hadri, S. Bresson, XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids. J. Mol. Struct. 1173, 653–664 (2018). https://doi.org/10.1016/j.molstruc.2018.07.039

    Article  CAS  Google Scholar 

  26. S. Gamoudi, E. Srasra, Adsorption of organic dyes by HDPy+-modified clay: effect of molecular structure on the adsorption. J. Mol. Struct. 1193, 522–531 (2019). https://doi.org/10.1016/j.molstruc.2019.05.055

    Article  CAS  Google Scholar 

  27. S.F.A. Shattar, N.A. Zakaria, K.Y. Foo, Preparation of a montmorillonite-derived adsorbent for the practical treatment of ionic and nonionic pesticides. J. Mater. Res. Technol. 8, 4713–4724 (2019). https://doi.org/10.1016/j.jmrt.2019.08.017

    Article  CAS  Google Scholar 

  28. M. Foroughi-Dahr, H. Abolghasemi, M. Esmaieli, G. Nazari, B. Rasem, Experimental study on the adsorptive behavior of Congo red in cationic surfactant-modified tea waste. Process. Saf. Environ. Prot. 95, 226–236 (2015). https://doi.org/10.1016/j.psep.2015.03.005

    Article  CAS  Google Scholar 

  29. L.G. Yan, J. Wang, H.Q. Yu, Q. Wei, B. Du, X.Q. Shan, Adsorption of benzoic acid by CTAB exchanged montmorillonite. Appl. Clay Sci. 37, 226–230 (2007). https://doi.org/10.1016/j.clay.2006.12.014

    Article  CAS  Google Scholar 

  30. A.R. Mermut, G. Lagaly, Baseline studies of the clay minerals society source clays: layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays Clay Miner. 49, 393–397 (2001). https://doi.org/10.1346/CCMN.2001.0490506

    Article  CAS  Google Scholar 

  31. M. Lepoitevin, M. Jaber, R. Guégan, J.M. Janot, P. Dejardin, F. Henn, S. Balme, BSA and lysozyme adsorption on homoionic montmorillonite: influence of the interlayer cation. Appl. Clay Sci. 95, 396–402 (2014). https://doi.org/10.1016/j.clay.2014.05.003

    Article  CAS  Google Scholar 

  32. M. Kharroubi, S. Balme, F. Henn, J.C. Giuntini, H. Belarbi, A. Haouzi, Dehydration enthalpy of alkali-cations-exchanged montmorillonite from thermogravimetric analysis. J. Colloid Interface Sci. 329, 339–345 (2009). https://doi.org/10.1016/j.jcis.2008.09.058

    Article  CAS  PubMed  Google Scholar 

  33. A.K. Mishra, T. Arockiadoss, S. Ramaprabhu, Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem. Eng. J. 162, 1026–1034 (2010). https://doi.org/10.1016/j.cej.2010.07.014

    Article  CAS  Google Scholar 

  34. M. Kiranşan, R.D.C. Soltani, A. Hassani, S. Karaca, A. Khataee, Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye. J. Taiwan Inst. Chem. Eng. 45, 2565–2577 (2014). https://doi.org/10.1016/j.jtice.2014.06.007

    Article  CAS  Google Scholar 

  35. H. Belarbi, M.H. Al-Malack, Adsorption and stabilization of phenol by modified local clay. Int. J. Environ. Res. 4, 855–860 (2010). https://doi.org/10.22059/ijer.2010.272

    Article  CAS  Google Scholar 

  36. O. Carmody, R. Frost, Y. Xi, S. Kokot, Surface characterisation of selected sorbent materials for common hydrocarbon fuels. Surf. Sci. 601, 2066–2076 (2007). https://doi.org/10.1016/j.susc.2007.03.004

    Article  CAS  Google Scholar 

  37. F. Salles, J.M. Douillard, O. Bildstein, C. Gaudin, B. Prelot, J. Zajac, H. Van Damme, Driving force for the hydration of the swelling clays: case of montmorillonites saturated with alkaline-earth cations. J. Colloid Interface Sci. 395, 269–276 (2013). https://doi.org/10.1016/j.jcis.2012.12.050

    Article  CAS  PubMed  Google Scholar 

  38. Y. Li, X. Wang, J. Wang, Cation exchange, interlayer spacing, and thermal analysis of Na/Ca-montmorillonite modified with alkaline and alkaline earth metal ions. J. Therm. Anal. Calorim. 110, 1199–1206 (2012). https://doi.org/10.1007/s10973-011-2109-1

    Article  CAS  Google Scholar 

  39. W.H. Yu, Q.Q. Ren, D.S. Tong, C.H. Zhou, H. Wang, Clean production of CTAB-montmorillonite: formation mechanism and swelling behavior in xylene. Appl. Clay Sci. 97–98, 222–234 (2014). https://doi.org/10.1016/j.clay.2014.06.007

    Article  CAS  Google Scholar 

  40. E.R. Kenawy, A.A. Ghfar, S.M. Wabaidur, M.A. Khan, M.R. Siddiqui, Z.A. Alothman, A.A. Alqadami, M. Hamid, Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes. J. Environ. Manag. 219, 285–293 (2018). https://doi.org/10.1016/j.jenvman.2018.04.121

    Article  CAS  Google Scholar 

  41. L. Zhu, R. Zhu, L. Xu, X. Ruan, Influence of clay charge densities and surfactant loading amount on the microstructure of CTMA-montmorillonite hybrids. Colloids Surf A Physicochem Eng Asp 304, 41–48 (2007). https://doi.org/10.1016/j.colsurfa.2007.04.019

    Article  CAS  Google Scholar 

  42. M. Belhocine, A. Haouzi, G. Bassou, T. Phou, D. Maurin, J.L. Bantignies, F. Henn, Isosteric heat of water adsorption and desorption in homoionic alkaline-earth montmorillonites. Chem. Phys. 501, 26–34 (2018). https://doi.org/10.1016/j.chemphys.2017.11.012

    Article  CAS  Google Scholar 

  43. K. Yamamoto, T. Shiono, R. Yoshimura, Y. Matsui, M. Yoneda, Influence of hydrophilicity on adsorption of caffeine onto montmorillonite. Adsorpt. Sci. Technol. 36, 967–981 (2018). https://doi.org/10.1177/0263617417735480

    Article  CAS  Google Scholar 

  44. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  45. V.A. Oyanedel-Craver, J.A. Smith, Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. J. Hazard. Mater. 137, 1102–1114 (2006). https://doi.org/10.1016/j.jhazmat.2006.03.051

    Article  CAS  PubMed  Google Scholar 

  46. F. Xiao, B.Q. Yan, X.Y. Zou, X.Q. Cao, L. Dong, X.J. Lyu, L. Li, J. Qiu, P. Chen, S.G. Hu, Q.J. Zhang, Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids Surf A Physicochem Eng Asp 587, 124311 (2020). https://doi.org/10.1016/j.colsurfa.2019.124311

    Article  CAS  Google Scholar 

  47. F. Houhoune, D. Nibou, S. Chegrouche, S. Menacer, Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species. J. Environ. Chem. Eng. 4, 3459–3467 (2016). https://doi.org/10.1016/j.jece.2016.07.018

    Article  CAS  Google Scholar 

  48. N. Liu, H. Wang, C.H. Weng, C.C. Hwang, Adsorption characteristics of Direct Red 23 azo dye onto powdered tourmaline. Arab. J. Chem. 11, 1281–1291 (2018). https://doi.org/10.1016/j.arabjc.2016.04.010

    Article  CAS  Google Scholar 

  49. K.Y. Foo, L.K. Lee, B.H. Hameed, Batch adsorption of semi-aerobic landfill leachate by granular activated carbon prepared by microwave heating. Chem. Eng. J. 222, 259264 (2013). https://doi.org/10.1016/j.cej.2013.02.032

    Article  CAS  Google Scholar 

  50. R. Kecili, C.M. Hussain, Chapter 4—Mechanism of adsorption on nanomaterials (Elsevier Inc., Amsterdam, 2018). https://doi.org/10.1016/B978-0-12-812792-6.00004-2

    Book  Google Scholar 

  51. L. Hua, H. Ma, L. Zhang, Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ–Al2O3. Chemosphere 90, 143–149 (2013). https://doi.org/10.1016/j.chemosphere.2012.06.018

    Article  CAS  PubMed  Google Scholar 

  52. M.C. Grieve, R.M.E. Griffin, R. Malone, Characteristic dye absorption peaks found in the FTIR spectra of coloured acrylic fibres. Sci. Justice J. Forensic Sci. Soc. 38, 27–37 (1998). https://doi.org/10.1016/S1355-0306(98)72070-2

    Article  CAS  Google Scholar 

  53. L. Wang, A. Wang, Adsorption properties of Congo red from aqueous solution onto surfactant-modified montmorillonite. J. Hazard. Mater. 160, 173–180 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.104

    Article  CAS  PubMed  Google Scholar 

  54. C. Namasivayam, D. Kavitha, Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments 54, 47–58 (2002). https://doi.org/10.1016/S0143-7208(02)00025-6

    Article  CAS  Google Scholar 

  55. T. Taher, R. Putra, N. Rahayu, A. Lesbani, Preparation of magnetite-nanoparticle-decorated NiFe layered double hydroxide and its adsorption performance for Congo red dye removal. Chem. Phys. Lett. 777, 138712 (2021). https://doi.org/10.1016/j.cplett.2021.138712

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Harouache.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 853 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harouache, A., Kharroubi, M., Lefkaier, I.K. et al. Adsorption of anionic dye onto homoionic montmorillonite: effect of the exchangeable cation on the adsorption. J IRAN CHEM SOC 21, 1423–1438 (2024). https://doi.org/10.1007/s13738-024-03009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-03009-7

Keywords

Navigation