Skip to main content
Log in

The Proteostasis of Thymic Stromal Cells in Health and Diseases

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

TSC:

Thymic stromal cell

TEC:

Thymic epithelial cell

ERQC:

Endoplasmic reticulum quality control system

ERAD:

Endoplasmic reticulum-associated degradation

UPS:

Ubiquitin-proteasome system

UPR:

Unfolding protein response

CMJ:

Cortical-medullary junction

cTEC:

Cortical thymic epithelial cell

mTEC:

Medullary epithelial cell

TRAs:

Tissue restricted antigens

ECM:

Extracellular matrix

Fb:

Fibroblast

CapFb:

Capsular fibroblast

mFb:

Medullary fibroblast

MSC:

Mesenchymal stem cells

MEx:

Mesenchymal stromal cell-derived extracellular vesicle

tDC:

Thymic dendritic cells

SIRPα:

Signal-regulated proteinα

PV:

Perivascular space

HSC:

Hematopoietic progenitor cell

BM:

Blood-thymus barrier

ECMs:

Extracellular matrix components

TPEC:

Thymic portal endothelial cell

EMT:

Epithelial-mesenchymal transition

ETPs:

Early T lineage progenitor

TNFRSF:

Tumor necrosis factor receptor super family

LTβR:

Lymphotoxin β receptor

NF-κB:

Nuclear factor kappa-B

tTreg:

Thymic regulatory T cell

OPG:

Osteoprotegerin

Fezf2:

Forebrain embryonic zinc fingerlike protein 2

pGE:

Promiscuous gene expression

chd4:

Chromodomain helicase DNA binding protein 4

Aire:

Autoimmune regulator

Fn1:

Fibronectin 1

FGF:

Fibroblast growth factor

TGF-β1:

Transforming growth factor β1

VEGF:

Vascular endothelial growth factor

VEC:

Vascular endothelial cell

iTPEC:

Immigration TPEC

eTPEC:

Egress TPEC

S1P:

Sphingosine 1-phosphate

CP:

Core particle

RP:

Regulatory particle

chd5:

Chromodomain helicase DNA binding protein 5

MMP9:

Metalloproteinase 9

RIDD:

IRE1α-dependent decay

LAMP2:

Lysosomal-associated membrane protein 2

TSSP:

Thymus-Specific Serine Peptidase

TRAF6:

TNF receptor associated factor 6

EAE:

Experimental autoimmune encephalomyelitis

IFNλ:

Interferonλ

PPARγ:

Peroxisome proliferator-activated receptorγ

TETs:

Thymic epithelial tumors

TME:

Tumor microenvironment

cFLIP:

Cellular FLICE-like Inhibitory Protein

TRECs:

T cell receptor excision circles

RTEs:

Recent thymic emigrants

MG:

Myasthenia Gravis

References

  1. Palmer S, Albergante L, Blackburn CC et al (2018) Thymic involution and rising disease incidence with age [J]. Proc Natl Acad Sci USA 115(8):1883–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeng Y, Liu C, Gong Y et al (2019) Single-cell RNA sequencing resolves Spatiotemporal Development of pre-thymic lymphoid progenitors and Thymus organogenesis in human embryos [J]. Immunity, 51(5):930 – 48.e6.

  3. Nitta T, Takayanagi H (2020) Non-epithelial thymic stromal cells: Unsung heroes in Thymus organogenesis and T cell development [J]. Front Immunol 11:620894

    Article  CAS  PubMed  Google Scholar 

  4. Han J, Zúñiga-Pflücker JC (2021) A 2020 view of Thymus stromal cells in T cell development [J]. J Immunol (Baltimore Md: 1950) 206(2):249–256

    Article  CAS  Google Scholar 

  5. Klein L, Kyewski B, Allen PM et al (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see) [J]. Nat Rev Immunol 14(6):377–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klein L, Robey EA, Hsieh CS (2019) Central CD4(+) T cell tolerance: deletion versus regulatory T cell differentiation [J]. Nat Rev Immunol 19(1):7–18

    Article  CAS  PubMed  Google Scholar 

  7. Kernfeld EM, Genga RMJ, Neherin K et al (2018) A single-cell transcriptomic atlas of Thymus organogenesis resolves cell types and developmental maturation [J]. Immunity 48(6):1258–70e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oh S, Gray DHD, Chong MMW, Single-Cell (2021) RNA sequencing approaches for tracing T cell development [J]. J Immunol (Baltimore Md: 1950) 207(2):363–370

    Article  CAS  Google Scholar 

  9. Park JE, Botting RA, Domínguez Conde C et al (2020) A cell atlas of human thymic development defines T cell repertoire formation [J]. Science (New York, NY), 367(6480)

  10. Camaglia F, Ryvkin A, Greenstein E et al (2023) Quantifying changes in the T cell receptor repertoire during thymic development [J]. eLife, 12

  11. Chorro L, Suzuki M, Chin SS et al (2018) Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape [J]. Nat Commun 9(1):5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Owen DL, La Rue RS, Munro SA et al (2022) Tracking Regulatory T Cell Development in the Thymus using single-cell RNA Sequencing/TCR sequencing [J]. J Immunol (Baltimore Md: 1950) 209(7):1300–1313

    Article  CAS  Google Scholar 

  13. Baran-Gale J, Morgan MD, Maio S et al (2020) Ageing compromises mouse thymus function and remodels epithelial cell differentiation [J]. eLife, 9

  14. Ki S, Park D, Selden HJ et al (2014) Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution [J]. Cell Rep 9(1):402–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taves MD, Ashwell JD (2022) Effects of sex steroids on thymic epithelium and thymocyte development [J]. Front Immunol 13:975858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reis M, Veneziani LP, Porto FL et al (2023) Intrathymic somatotropic circuitry: consequences upon thymus involution [J]. Front Immunol 14:1108630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu C, Zhang K, Jiang F et al (2021) Epigenetic modifications in thymic epithelial cells: an evolutionary perspective for thymus atrophy [J]. Clin Epigenetics 13(1):210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang Y, Tao Z, Chen H et al (2021) Endoplasmic Reticulum Quality Control in Immune cells [J]. Front cell Dev Biology 9:740653

    Article  Google Scholar 

  19. Ji Y, Kim H, Yang L et al (2016) The Sel1L-Hrd1 endoplasmic reticulum-Associated Degradation Complex manages a key checkpoint in B Cell Development [J]. Cell Rep 16(10):2630–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vincenz-Donnelly L, Hipp MS (2017) The endoplasmic reticulum: a hub of protein quality control in health and disease [J], vol 108. Free radical biology & medicine, pp 383–393

  21. Liu X, Yu J, Xu L et al (2021) Notch-induced endoplasmic reticulum-associated degradation governs mouse thymocyte β-selection [J]. eLife, 10

  22. Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection [J]. Trends Immunol 33(6):256–263

    Article  CAS  PubMed  Google Scholar 

  23. Frantzeskakis M, Takahama Y, Ohigashi I (2021) The role of Proteasomes in the Thymus [J]. Front Immunol 12:646209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mittelbrunn M, Kroemer G (2021) Hallmarks of T cell aging [J]. Nat Immunol 22(6):687–698

    Article  CAS  PubMed  Google Scholar 

  25. Lopes N, Sergé A, Ferrier P et al (2015) Thymic crosstalk coordinates Medulla Organization and T-Cell Tolerance induction [J]. Front Immunol 6:365

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sakata M, Ohigashi I, Takahama Y (2018) Cellularity of thymic epithelial cells in the postnatal mouse [J]. J Immunol (Baltimore Md: 1950) 200(4):1382–1388

    Article  CAS  Google Scholar 

  27. Morales-Sanchez A, Shissler SC, Cowan JE et al (2023) Revelations in Thymic Epithelial Cell Biology and Heterogeneity from single-cell RNA sequencing and lineage tracing methodologies [J]. (Clifton NJ) 2580:25–49Methods in molecular biology

    CAS  Google Scholar 

  28. Guyden JC, Martinez M, Chilukuri RV et al (2015) Thymic nurse cells participate in Heterotypic internalization and repertoire selection of immature thymocytes; their removal from the Thymus of Autoimmune animals may be important to Disease etiology [J]. Curr Mol Med 15(9):828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lebel M, Coutelier M, Galipeau M et al (2020) Differential expression of tissue-restricted antigens among mTEC is associated with distinct autoreactive T cell fates [J]. Nat Commun 11(1):3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miragaia RJ, Zhang X, Gomes T et al (2018) Single-cell RNA-sequencing resolves self-antigen expression during mTEC development [J]. Sci Rep 8(1):685

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cosway EJ, Lucas B, James KD et al (2017) Redefining thymus medulla specialization for central tolerance [J]. J Exp Med 214(11):3183–3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bornstein C, Nevo S, Giladi A et al (2018) Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells [J]. Nature 559(7715):622–626

    Article  CAS  PubMed  Google Scholar 

  33. Mino N, Muro R, Ota A et al (2022) The transcription factor Sox4 is required for thymic tuft cell development [J]. Int Immunol 34(1):45–52

    Article  CAS  PubMed  Google Scholar 

  34. Yamada Y, Simon-Keller K, Belharazem-Vitacolonnna D et al (2021) A Tuft cell-like signature is highly prevalent in thymic squamous cell carcinoma and delineates new molecular subsets among the major lung cancer histotypes [J]. J Thoracic Oncol 16(6):1003–1016

  35. James KD, Jenkinson WE, Anderson G (2021) Non-epithelial stromal cells in Thymus development and function [J]. Front Immunol 12:634367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Z, Peng Y, Yuan J et al (2023) Mesenchymal stem cells: a promising treatment for thymic involution [J]. Advances in experimental medicine and biology

  37. Zhang X, He J, Zhao K et al (2023) Mesenchymal stem cells ameliorate chronic GVHD by boosting thymic regeneration in a CCR9-dependent manner in mice [J]. Blood Adv

  38. Reis M, Willis GR, Fernandez-Gonzalez A et al (2021) Mesenchymal stromal cell-derived extracellular vesicles restore Thymic Architecture and T cell function disrupted by neonatal hyperoxia [J]. Front Immunol 12:640595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haunerdinger V, Moccia MD, Opitz L et al (2021) Novel combination of surface markers for the Reliable and Comprehensive Identification of Human thymic epithelial cells by Flow Cytometry: quantitation and transcriptional characterization of thymic stroma in a Pediatric cohort [J]. Front Immunol 12:740047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nitta T, Ota A, Iguchi T et al (2021) The fibroblast: an emerging key player in thymic T cell selection [J]. Immunol Rev 302(1):68–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kroger CJ, Spidale NA, Wang B et al (1950) Thymic Dendritic Cell Subsets Display Distinct Efficiencies and Mechanisms of Intercellular MHC Transfer [J]. Journal of immunology (Baltimore, Md: 2017, 198(1):249 – 56

  42. Vollmann EH, Rattay K, Barreiro O et al (2021) Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules [J]. Nat Commun 12(1):6230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herbin O, Bonito AJ, Jeong S et al (2016) Medullary thymic epithelial cells and CD8α(+) dendritic cells coordinately regulate central tolerance but CD8α(+) cells are dispensable for thymic regulatory T cell production [J]. J Autoimmun 75:141–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang H, Zúñiga-Pflücker JC (2022) Thymic microenvironment: interactions between Innate Immune cells and developing thymocytes [J]. Front Immunol 13:885280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller J (2020) The early work on the discovery of the function of the thymus, an interview with Jacques Miller [J]. Cell Death Differ 27(1):396–401

    Article  PubMed  Google Scholar 

  46. Kalucka J, de Rooij L, Goveia J et al (2020) Single-cell transcriptome atlas of murine endothelial cells [J]. Cell 180(4):764–79e20

    Article  CAS  PubMed  Google Scholar 

  47. Nagatake T, Zhao YC, Ito T et al (2021) Selective expression of claudin-5 in thymic endothelial cells regulates the blood-thymus barrier and T-cell export [J]. Int Immunol 33(3):171–182

    Article  CAS  PubMed  Google Scholar 

  48. Shi Y, Wu W, Chai Q et al (2016) LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration [J]. Nat Commun 7:12369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Watson SA, Javanmardi Y, Zanieri L et al (2023) Integrated role of human thymic stromal cells in hematopoietic stem cell extravasation [J]. Bioeng Translational Med 8(2):e10454

    Article  CAS  Google Scholar 

  50. Yamada Y, Iwane K, Nakanishi Y et al (2023) Thymic carcinoma: unraveling neuroendocrine differentiation and epithelial cell identity loss [J]. Cancers, 16(1)

  51. Lins MP (2022) Thymic extracellular matrix in the Thymopoiesis: just a supporting? [J]. Biotech (Basel (Switzerland)), 11(3)

  52. Liang Z, Dong X, Zhang Z et al (2022) Age-related thymic involution: mechanisms and functional impact [J]. Aging Cell 21(8):e13671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marcovecchio GE, Ferrua F, Fontana E et al (2021) Premature senescence and increased oxidative stress in the Thymus of Down Syndrome patients [J]. Front Immunol 12:669893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dooley J, Liston A (2012) Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue [J]. Eur J Immunol 42(5):1073–1079

    Article  CAS  PubMed  Google Scholar 

  55. Fujimori S, Ohigashi I, Abe H et al (2022) Fine-tuning of β-catenin in mouse thymic epithelial cells is required for postnatal T-cell development [J]. eLife, 11

  56. Chen R, Wang K, Feng Z et al (2021) CD147 deficiency in T cells prevents thymic involution by inhibiting the EMT process in TECs in the presence of TGFβ [J]. Cellular & molecular immunology, 18(1):171–181

  57. Wang Y, Tan J, Du H et al (2018) Notch1 inhibits Rosiglitazone-Induced Adipogenic differentiation in primary thymic stromal cells [J]. Front Pharmacol 9:1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferrando-Martínez S, Ruiz-Mateos E, Dudakov JA et al (2015) WNT signaling suppression in the senescent human thymus [J]. The journals of gerontology Series A, Biological sciences and medical sciences, 70(3):273–281

  59. Xu M, Gan T, Ning H et al (2018) MicroRNA functions in Thymic Biology: Thymic Development and Involution [J]. Front Immunol 9:2063

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lancaster JN, Keatinge-Clay DE, Srinivasan J et al (2022) Central tolerance is impaired in the middle-aged thymic environment [J]. Aging Cell 21(6):e13624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Farley AM, Chengrui A, Palmer S et al (2023) Thymic epithelial cell fate and potency in early organogenesis assessed by single cell transcriptional and functional analysis [J]. Front Immunol 14:1202163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gao H, Cao M, Deng K et al (2022) The lineage differentiation and dynamic heterogeneity of thymic epithelial cells during Thymus organogenesis [J]. Front Immunol 13:805451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Magaletta ME, Lobo M, Kernfeld EM et al Integration of single-cell transcriptomes and chromatin landscapes reveals regulatory programs driving pharyngeal organ development [J]

  64. Alves NL, Richard-Le Goff O, Huntington ND et al (2009) Characterization of the thymic IL-7 niche in vivo [J]. Proc Natl Acad Sci USA 106(5):1512–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mazzucchelli RI, Warming S, Lawrence SM et al (2009) Visualization and identification of IL-7 producing cells in reporter mice [J]. PLoS ONE 4(11):e7637

    Article  PubMed  PubMed Central  Google Scholar 

  66. Paiva RA, Ramos CV, Leiria G et al (2022) IL-7 receptor drives early T lineage progenitor expansion [J]. J Immunol (Baltimore Md: 1950) 209(10):1942–1949

    Article  CAS  Google Scholar 

  67. Ribeiro AR, Rodrigues PM, Meireles C et al (2013) Thymocyte selection regulates the homeostasis of IL-7-expressing thymic cortical epithelial cells in vivo [J]. J Immunol (Baltimore Md: 1950) 191(3):1200–1209

    Article  CAS  Google Scholar 

  68. Pinheiro RGR, Alves NL (2021) The early postnatal life: a dynamic period in thymic epithelial cell differentiation [J]. Front Immunol 12:668528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O’Sullivan BJ, Yekollu S, Ruscher R et al (2018) Autoimmune-mediated thymic atrophy is accelerated but reversible in RelB-Deficient mice [J]. Front Immunol 9:1092

    Article  PubMed  PubMed Central  Google Scholar 

  70. Baik S, Sekai M, Hamazaki Y et al (2016) Relb acts downstream of medullary thymic epithelial stem cells and is essential for the emergence of RANK(+) medullary epithelial progenitors [J]. Eur J Immunol 46(4):857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Riemann M, Andreas N, Fedoseeva M et al (2017) Central immune tolerance depends on crosstalk between the classical and alternative NF-κB pathways in medullary thymic epithelial cells [J]. J Autoimmun 81:56–67

    Article  CAS  PubMed  Google Scholar 

  72. Akiyama N, Shinzawa M, Miyauchi M et al (2014) Limitation of immune tolerance-inducing thymic epithelial cell development by Spi-B-mediated negative feedback regulation [J]. J Exp Med 211(12):2425–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Akiyama N, Takizawa N, Miyauchi M et al (2016) Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator [J]. J Exp Med 213(8):1441–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liang Z, Zhang Q, Dong X et al (2021) mTORC2 negatively controls the maturation process of medullary thymic epithelial cells by inhibiting the LTβR/RANK-NF-κB axis [J]. J Cell Physiol 236(6):4725–4737

    Article  CAS  PubMed  Google Scholar 

  75. Rattay K, Meyer HV, Herrmann C et al (2016) Evolutionary conserved gene co-expression drives generation of self-antigen diversity in medullary thymic epithelial cells [J]. J Autoimmun 67:65–75

    Article  CAS  PubMed  Google Scholar 

  76. Takaba H, Morishita Y, Tomofuji Y et al (2015) Fezf2 orchestrates a Thymic Program of Self-Antigen expression for Immune Tolerance [J]. Cell 163(4):975–987

    Article  CAS  PubMed  Google Scholar 

  77. Tomofuji Y, Takaba H, Suzuki HI et al (2020) Chd4 choreographs self-antigen expression for central immune tolerance [J]. Nat Immunol 21(8):892–901

    Article  CAS  PubMed  Google Scholar 

  78. Bhalla P, Wysocki CA, van Oers NSC (2020) Molecular insights into the causes of Human Thymic Hypoplasia with Animal models [J]. Front Immunol 11:830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Phillips HM, Stothard CA, Shaikh Qureshi WM Pax9 is required for cardiovascular development and interacts with Tbx1 in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis [J]., Development et al (2019) (Cambridge, England), 146(18)

  80. Pan Y, Jiang Z, Ye Y et al (2023) Role and mechanism of BMP4 in Regenerative Medicine and tissue Engineering [J]. Ann Biomed Eng 51(7):1374–1389

    Article  PubMed  Google Scholar 

  81. Wang X, Liang Y, Zhu Z et al (2022) Fn1 regulates the third pharyngeal pouch patterning and morphogenesis [J]. J Dent Res 101(9):1082–1091

    Article  CAS  PubMed  Google Scholar 

  82. Tsai PT, Lee RA, Wu H (2003) BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis [J]. Blood 102(12):3947–3953

    Article  CAS  PubMed  Google Scholar 

  83. Hsu HP, Chen YT, Chen YY et al (2021) Heparan sulfate is essential for thymus growth [J]. J Biol Chem 296:100419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nitta T, Tsutsumi M, Nitta S et al (2020) Fibroblasts as a source of self-antigens for central immune tolerance [J]. Nat Immunol 21(10):1172–1180

    Article  PubMed  Google Scholar 

  85. Wendland K, Niss K, Kotarsky K et al (1950) Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis [J]. Journal of immunology (Baltimore, Md: 2018, 201(2):524 – 32

  86. Seach N, Ueno T, Fletcher AL et al (2008) The lymphotoxin pathway regulates Aire-independent expression of ectopic genes and chemokines in thymic stromal cells [J]. J Immunol (Baltimore Md: 1950) 180(8):5384–5392

    Article  CAS  Google Scholar 

  87. Stankiewicz LN, Salim K, Flaschner EA et al (2023) Sex biased human thymic architecture guides T cell development through spatially defined niches [J]. the preprint server for biology, bioRxiv

    Book  Google Scholar 

  88. Aw D, Silva AB, Maddick M et al (2008) Architectural changes in the thymus of aging mice [J]. Aging Cell 7(2):158–167

    Article  CAS  PubMed  Google Scholar 

  89. Yang H, Youm YH, Sun Y et al (2009) Axin expression in thymic stromal cells contributes to an age-related increase in thymic adiposity and is associated with reduced thymopoiesis independently of ghrelin signaling [J]. J Leukoc Biol 85(6):928–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Youm YH, Horvath TL, Mangelsdorf DJ et al (2016) Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution [J]. Proc Natl Acad Sci USA 113(4):1026–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sui Y, Liu Z, Park SH et al (2018) IKKβ is a β-catenin kinase that regulates mesenchymal stem cell differentiation [J]. JCI Insight, 3(2)

  92. Tan J, Wang Y, Zhang N et al (2016) Induction of epithelial to mesenchymal transition (EMT) and inhibition on adipogenesis: two different sides of the same coin? Feasible roles and mechanisms of transforming growth factor β1 (TGF-β1) in age-related thymic involution [J]. Cell Biol Int 40(8):842–846

    Article  CAS  PubMed  Google Scholar 

  93. Wertheimer T, Velardi E, Tsai J et al (2018) Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration [J]. Science immunology, 3(19)

  94. Wang S, Mundada L, Johnson S et al (2015) Characterization and angiogenic potential of human neonatal and infant thymus mesenchymal stromal cells [J]. Stem Cells Translational Med 4(4):339–350

    Article  CAS  Google Scholar 

  95. Pulkkinen HH, Kiema M, Lappalainen JP et al (2021) BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF [J]. Angiogenesis 24(1):129–144

    Article  CAS  PubMed  Google Scholar 

  96. Buono M, Facchini R, Matsuoka S et al (2016) A dynamic niche provides kit ligand in a stage-specific manner to the earliest thymocyte progenitors [J]. Nat Cell Biol 18(2):157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buono M, Thézénas ML, Ceroni A et al (2018) Bi-directional signaling by membrane-bound KitL induces proliferation and coordinates thymic endothelial cell and thymocyte expansion [J]. Nat Commun 9(1):4685

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu C, Saito F, Liu Z et al (2006) Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization [J]. Blood 108(8):2531–2539

    Article  CAS  PubMed  Google Scholar 

  99. Ren B, Xia H, Liao Y et al (2022) Endothelial SIRPα signaling controls VE-cadherin endocytosis for thymic homing of progenitor cells [J]. eLife, 11

  100. Xia H, Zhong S, Zhao Y et al (2021) Thymic egress is regulated by T cell-derived LTβR Signal and via distinct thymic portal endothelial cells [J]. Front Immunol 12:707404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu X, Siggel M, Ovchinnikov S et al (2020) Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex [J]. Science (New York, NY), 368(6489)

  102. González A, Covarrubias-Pinto A, Bhaskara RM et al (2023) Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum [J]. Nature 618(7964):394–401

    Article  PubMed  PubMed Central  Google Scholar 

  103. Abi Habib J, Lesenfants J, Vigneron N et al (2022) Funct Differences between Proteasome Subtypes [J] Cells, 11(3)

  104. Watanabe A, Yashiroda H, Ishihara S et al (2022) The Molecular mechanisms governing the Assembly of the Immuno- and thymoproteasomes in the Presence of constitutive proteasomes [J]. Cells, 11(9)

  105. Liepe J, Ovaa H, Mishto M (2018) Why do proteases mess up with antigen presentation by re-shuffling antigen sequences? [J]. Curr Opin Immunol 52:81–86

    Article  CAS  PubMed  Google Scholar 

  106. Kuckelkorn U, Stübler S, Textoris-Taube K et al (2019) Proteolytic dynamics of human 20S thymoproteasome [J]. J Biol Chem 294(19):7740–7754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liepe J, Holzhütter HG, Bellavista E et al (2015) Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes [J]. eLife 4:e07545

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tomaru U, Konno S, Miyajima S et al (2019) Restricted expression of the Thymoproteasome is required for thymic selection and peripheral homeostasis of CD8(+) T cells [J]. Cell Rep, 26(3):639 – 51.e2.

  109. Sasaki K, Takada K, Ohte Y et al (2015) Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells [J]. Nat Commun 6:7484

    Article  CAS  PubMed  Google Scholar 

  110. Apavaloaei A, Laverdure JP, Perreault C (2021) PSMB11 regulates gene expression in cortical thymic epithelial cells [J]. Cell Rep 36(10):109546

    Article  CAS  PubMed  Google Scholar 

  111. Ohigashi I, Takahama Y (2021) Specific impact of β5t on proteasome subunit composition in cortical thymic epithelial cells [J]. Cell Rep 36(10):109657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ohigashi I, Ohte Y, Setoh K et al (2017) A human PSMB11 variant affects thymoproteasome processing and CD8 + T cell production [J]. JCI insight, 2(10)

  113. St-Pierre C, Morgand E, Benhammadi M et al (2017) Immunoproteasomes Control the Homeostasis of Medullary Thymic epithelial cells by alleviating Proteotoxic stress [J]. Cell Rep 21(9):2558–2570

    Article  CAS  PubMed  Google Scholar 

  114. Basler M, Mundt S, Groettrup M (2018) The immunoproteasome subunit LMP7 is required in the murine thymus for filling up a hole in the T cell repertoire [J]. Eur J Immunol 48(3):419–429

    Article  CAS  PubMed  Google Scholar 

  115. Kimura H, Caturegli P, Takahashi M et al (2015) New Insights into the Function of the Immunoproteasome in Immune and Nonimmune Cells [J]. Journal of immunology research, 2015:541984

  116. Limanaqi F, Biagioni F, Gaglione A et al (2019) A Sentinel in the Crosstalk between the nervous and Immune System: the (Immuno)-Proteasome [J]. Front Immunol 10:628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yao L, Zhou L, Xuan Y et al (2019) The proteasome activator REGγ counteracts immunoproteasome expression and autoimmunity [J]. J Autoimmun 103:102282

    Article  PubMed  Google Scholar 

  118. Funderburk KE, Kang J, Li HJ (2022) Regulation of Life & Death by REGγ [J]. Cells, 11(15)

  119. Tu J, Zhang H, Yang T et al (2022) Aging-associated REGγ proteasome decline predisposes to tauopathy [J]. J Biol Chem 298(11):102571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hwang J, Qi L (2018) Quality Control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways [J]. Trends Biochem Sci 43(8):593–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sun Z, Brodsky JL (2019) Protein quality control in the secretory pathway [J]. J Cell Biol 218(10):3171–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Guttman O, Le Thomas A, Marsters S et al (2022) Antigen-derived peptides engage the ER stress sensor IRE1α to curb dendritic cell cross-presentation [J]. J Cell Biol, 221(6)

  123. You K, Wang L, Chou CH et al (2021) QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis [J], vol 371. Science (New York, NY), 6524

  124. Dong X, Liang Z, Zhang J et al (2022) Trappc1 deficiency impairs thymic epithelial cell development by breaking endoplasmic reticulum homeostasis [J]. Eur J Immunol 52(11):1789–1804

    Article  CAS  PubMed  Google Scholar 

  125. Corazzari M, Gagliardi M, Fimia GM et al (2017) Endoplasmic reticulum stress, unfolded protein response, and Cancer Cell fate [J]. Front Oncol 7:78

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yamamoto K, Venida A, Yano J et al (2020) Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I [J]. Nature 581(7806):100–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rodrigues PM, Sousa LG, Perrod C et al (2023) LAMP2 regulates autophagy in the thymic epithelium and thymic stroma-dependent CD4 T cell development [J]. Autophagy 19(2):426–439

    Article  CAS  PubMed  Google Scholar 

  128. Guerder S, Hassel C, Carrier A (2019) Thymus-specific serine protease, a protease that shapes the CD4 T cell repertoire [J]. Immunogenetics 71(3):223–232

    Article  CAS  PubMed  Google Scholar 

  129. Schuster C, Gerold KD, Schober K et al (2015) The autoimmunity-Associated Gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection [J]. Immunity 42(5):942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Thomas R, Wang W, Su DM (2020) Contributions of age-related thymic involution to Immunosenescence and inflammaging [J], vol 17. I & A, Immunity & ageing, p 2

    Google Scholar 

  131. Xu L, Wei C, Chen Y et al (2022) IL-33 induces thymic involution-associated naive T cell aging and impairs host control of severe infection [J]. Nat Commun 13(1):6881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu H, Li X, Zhou C et al (2021) Circulating mature dendritic cells homing to the thymus promote thymic epithelial cells involution via the Jagged1/Notch3 axis [J]. Cell Death Discovery 7(1):225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pathak M, Lal G (2020) The Regulatory function of CCR9(+) dendritic cells in inflammation and autoimmunity [J]. Front Immunol 11:536326

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wang HX, Zhang Q, Zhang J et al (2021) CD74 regulates cellularity and maturation of medullary thymic epithelial cells partially by activating the canonical NF-κB signaling pathway [J]. FASEB Journal: Official Publication Federation Am Soc Experimental Biology 35(5):e21535

    Article  CAS  Google Scholar 

  135. Shen H, Ji Y, Xiong Y et al (2019) Medullary thymic epithelial NF-kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice [J]. Proc Natl Acad Sci USA 116(38):19090–19097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bonito AJ, Aloman C, Fiel MI et al (2013) Medullary thymic epithelial cell depletion leads to autoimmune hepatitis [J]. J Clin Investig 123(8):3510–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Alexandropoulos K, Bonito AJ, Weinstein EG et al (2015) Medullary thymic epithelial cells and central tolerance in autoimmune hepatitis development: novel perspective from a new mouse model [J]. Int J Mol Sci 16(1):1980–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Centa M, Weinstein EG, Clemente JC et al (2022) Impaired central tolerance induces changes in the gut microbiota that exacerbate autoimmune hepatitis [J]. J Autoimmun 128:102808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang Q, Liang Z, Zhang J et al (2021) Sirt6 regulates the development of Medullary Thymic epithelial cells and contributes to the establishment of Central Immune tolerance [J]. Front cell Dev Biology 9:655552

    Article  Google Scholar 

  140. Zhang Q, Zhang J, Lei T et al (2022) Sirt6-mediated epigenetic modification of DNA accessibility is essential for Pou2f3-induced thymic tuft cell development [J]. Commun Biology 5(1):544

    Article  CAS  Google Scholar 

  141. Wang J, Song X, Tan G et al (2021) NAD + improved experimental autoimmune encephalomyelitis by regulating SIRT1 to inhibit PI3K/Akt/mTOR signaling pathway [J]. Aging 13(24):25931–25943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Serre L, Girard M, Ramadan A et al (2017) Thymic-specific serine protease limits Central Tolerance and exacerbates experimental autoimmune encephalomyelitis [J]. J Immunol (Baltimore Md: 1950) 199(11):3748–3756

    Article  CAS  Google Scholar 

  143. Jongsma MLM, Guarda G, Spaapen RM (2019) The regulatory network behind MHC class I expression [J]. Mol Immunol 113:16–21

    Article  CAS  PubMed  Google Scholar 

  144. Benhammadi M, Mathé J, Dumont-Lagacé M et al (2020) IFN-λ Enhances Constitutive Expression of MHC Class I Molecules on Thymic Epithelial Cells [J]. Journal of immunology (Baltimore, Md: 1950), 205(5):1268-80

  145. Ferrua F, Bortolomai I, Fontana E et al (2021) Thymic epithelial cell alterations and defective thymopoiesis lead to Central and Peripheral Tolerance Perturbation in MHCII Deficiency [J]. Front Immunol 12:669943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang J, Wang Y, Aili A et al (2019) Th1 Biased Progressive autoimmunity in aged aire-deficient mice accelerated thymic epithelial cell senescence [J]. Aging Disease 10(3):497–509

    Article  PubMed  PubMed Central  Google Scholar 

  147. Farini A, Sitzia C, Villa C et al (2021) Defective dystrophic thymus determines degenerative changes in skeletal muscle [J]. Nature communications, 12(1):2099

  148. Lu Y, Gao J, Zhang S et al (2018) Mir-142-3p regulates autophagy by targeting ATG16L1 in thymic-derived regulatory T cell (tTreg) [J]. Cell death & disease, 9(3):290.

  149. Yang J, Liu J, Liang J et al (2023) Epithelial-Mesenchymal Transition in Age-Associated Thymic Involution: Mechanisms and Therapeutic Implications [J]. Ageing research reviews, 102115

  150. Unuma K, Wen S, Aki T et al (2023) Ectopic myogenesis and fibrosis accompany adipogenesis during thymic involution induced by repeated cocaine administration [J]. Biochemical and biophysical research communications, 686:149201

  151. Chen CA, Chang JM, Chang EE et al (2018) Crosstalk between transforming growth factor-β1 and endoplasmic reticulum stress regulates alpha-smooth muscle cell actin expression in podocytes [J]. Life Sci 209:9–14

    Article  CAS  PubMed  Google Scholar 

  152. Tan J, Wang Y, Wang S et al (2019) Label-free quantitative proteomics identifies transforming growth factor β1 (TGF-β1) as an inhibitor of adipogenic transformation in OP9-DL1 cells and primary thymic stromal cells [J]. Cell & bioscience, 9:48

  153. Li H, Ren B, Yu S et al (2023) The clinicopathological significance of thymic epithelial markers expression in thymoma and thymic carcinoma [J]. BMC Cancer 23(1):161

    Article  PubMed  PubMed Central  Google Scholar 

  154. Papoudou-Bai A, Barbouti A, Galani V et al (2016) Expression of cell cycle and apoptosis regulators in thymus and thymic epithelial tumors [J]. Clin Experimental Med 16(2):147–159

    Article  CAS  Google Scholar 

  155. Yu L, Ke J, Du X et al (2019) Genetic characterization of thymoma [J]. Sci Rep 9(1):2369

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sarafian VS, Marinova TT, Gulubova MV (2009) Differential expression of LAMPs and ubiquitin in human thymus [J]. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica, 117(4):248–252

  157. Janik S, Schiefer AI, Bekos C et al (2016) HSP27 and 70 expression in thymic epithelial tumors and benign thymic alterations: diagnostic, prognostic and physiologic implications [J]. Sci Rep 6:24267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Belharazem D, Grass A, Paul C et al (2017) Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling [J]. Oncotarget 8(52):89580–89594

    Article  PubMed  PubMed Central  Google Scholar 

  159. Pons Benavent M, García Vázquez A, Guillén Climent S et al (2021) Thymoma-associated multiorgan autoimmunity with prominent muco-cutaneous involvement: two cases and review of the literature [J]. Int J Dermatol 60(2):e47–e9

    Article  PubMed  Google Scholar 

  160. Ao YQ, Jiang JH, Gao J et al (2022) Recent thymic emigrants as the bridge between thymoma and autoimmune diseases [J]. Biochim et Biophys acta Reviews cancer 1877(3):188730

    Article  CAS  Google Scholar 

  161. Iacomino N, Scandiffio L, Conforti F et al (2023) Muscle and muscle-like Autoantigen expression in Myasthenia gravis Thymus: possible molecular hint for autosensitization [J]. Biomedicines, 11(3)

  162. Yasumizu Y, Ohkura N, Murata H et al (2022) Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma [J]. Nat Commun 13(1):4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ruan X, Lu X, Gao J et al (2021) Multiomics data reveals the influences of myasthenia gravis on thymoma and its precision treatment [J]. J Cell Physiol 236(2):1214–1227

    Article  CAS  PubMed  Google Scholar 

  164. Wang Y, Thomas A, Lau C et al (2014) Mutations of epigenetic regulatory genes are common in thymic carcinomas [J]. Sci Rep 4:7336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Müller D, Mazzeo P, Koch R et al (2021) Functional apoptosis profiling identifies MCL-1 and BCL-xL as prognostic markers and therapeutic targets in advanced thymomas and thymic carcinomas [J]. BMC Med 19(1):300

    Article  PubMed  PubMed Central  Google Scholar 

  166. Weissferdt A, Fujimoto J, Kalhor N et al (2017) Expression of PD-1 and PD-L1 in thymic epithelial neoplasms [J]. Mod Pathology: Official J United States Can Acad Pathol Inc 30(6):826–833

    Article  CAS  Google Scholar 

  167. Higuchi R, Goto T, Hirotsu Y et al (2019) PD-L1 expression and tumor-infiltrating lymphocytes in thymic epithelial neoplasms [J]. J Clin Med, 8(11)

  168. Zhang X, Schalke B, Kvell K et al (2022) WNT4 overexpression and secretion in thymic epithelial tumors drive an autocrine loop in tumor cells in vitro [J]. Front Oncol 12:920871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kim WS, Han JM, Song HY et al (2020) Annona muricata L.-Derived polysaccharides as a potential adjuvant to a dendritic cell-based vaccine in a Thymoma-Bearing model [J]. Nutrients, 12(6)

Download references

Acknowledgements

These studies were supported by 81871234, 82172763 from the National Natural Science Foundation, China.

Author information

Authors and Affiliations

Authors

Contributions

TL performed the literature search, drafted all graphs, and wrote this manuscript. SX designed and revised the manuscript.

Corresponding author

Correspondence to Sheng Xia.

Ethics declarations

Ethics Approval

No applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Xia, S. The Proteostasis of Thymic Stromal Cells in Health and Diseases. Protein J (2024). https://doi.org/10.1007/s10930-024-10197-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10197-x

Keywords

Navigation