Skip to main content
Log in

Exploring the stochastic patterns of hyperchaotic Lorenz systems with variable fractional order and radial basis function networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This research explores the incorporation of variable order (VO) fractional calculus into the hyperchaotic Lorenz system and studies various chaotic features and attractors. Initially, we propose a variable fractional order hyperchaotic Lorenz system and numerically solve it. The solutions are obtained for multiple choices of control parameters, and these results serve as reference solutions for exploring chaos with the artificial intelligence tool radial basis function network (RBFN). We rebuild phase spaces and trajectories of system states to exhibit chaotic behavior at various levels. To further assess the sensitivity of chaotic attractors, Lyapunov exponents are calculated. The efficacy of the designed computational RBFN is validated through the RMSE and extensive error analysis. The proposed research on AI capabilities aims to introduce an innovative methodology for modeling and analyzing hyperchaotic dynamical systems with variable orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

Data availability

There is no data associated with this research work.

References

  1. Gu, Y., Li, G., Xu, X., Song, X., Zhong, H.: Solution of a new high-performance fractional-order Lorenz system and its dynamics analysis. Nonlinear Dyn. 111, 7469–7493 (2023)

    Article  Google Scholar 

  2. Tusset, A.M., Fuziki, M.E.K., Balthazar, J.M., Andrade, D.I., Lenzi, G.G.: Dynamic analysis and control of a financial system with chaotic behavior including fractional order. Fractal Fract. 7(7), 2504–3110 (2023)

    Article  Google Scholar 

  3. Rahman, M.U., Karaca, Y., Agarwal, R.P., David, S.A.: Mathematical modelling with computational fractional order for the unfolding dynamics of the communicable diseases. Appl. Math. Sci. Eng. 32(1), 2300330 (2024)

    Article  MathSciNet  Google Scholar 

  4. Nigmatullin, R.R., Zhang, W., Gubaidullin, I.: Accurate relationships between fractals and fractional integrals: new approaches and evaluations. Fract. Calc. Appl. Anal. 20(5), 1263–1280 (2017)

    Article  MathSciNet  Google Scholar 

  5. Tatom, F.B.: The relationship between fractional calculus and fractals. Fractals 3(1), 217–229 (1995)

    Article  MathSciNet  Google Scholar 

  6. Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317 (2017)

    Article  MathSciNet  Google Scholar 

  7. Jafari, H., Jassim, H.K., Moshokoa, S.P., Ariyan, V.M., Tchier, F.: Reduced differential transform method for partial differential equations within local fractional derivative operators. Adv. Mech. Eng. 8(4), 1687814016633013 (2016)

    Article  Google Scholar 

  8. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 515(11–12), 692–703 (2003)

    Article  MathSciNet  Google Scholar 

  9. Hioual, A., Ouannas, A., Grassi, G., Oussaeif, T.E.: Nonlinear Nabla variable-order fractional discrete systems: asymptotic stability and application to neural networks. J. Comput. Appl. Math. 423, 114939 (2023)

    Article  MathSciNet  Google Scholar 

  10. Valentim, C.A., Rabi, J.A., David, S.A., Machado, J.A.T.: On multistep tumor growth models of fractional variable-order. Biosystems 199, 104294 (2021)

    Article  Google Scholar 

  11. Villanueva, J.A.L., Iturriaga, P.R., Parrilla, L., Bolivar, S.R.: Application of variable-order fractional calculus to the modeling of calendar aging in lithium-ion batteries. Energies 16(5), 2484 (2023)

    Article  Google Scholar 

  12. Iskakova, K., Alam, M.M., Ahmad, S., Saifullah, S., Akgül, A., Yılmaz, G.: Dynamical study of a novel 4D hyperchaotic system: an integer and fractional order analysis. Math. Comput. Simul. 208, 219–245 (2023)

    Article  MathSciNet  Google Scholar 

  13. Wang, X., Wang, M.: A hyperchaos generated from Lorenz system. Stat. Mech. Appl. 387(214), 3751–3758 (2008)

    Article  MathSciNet  Google Scholar 

  14. Vaidyanathan, S., Sampath, S.: Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. In: International conference on digital image processing and information technology, pp. 156–164 (2011)

  15. Sun, K., Liu, X., Zhu, C.: Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn. 69, 1383–1391 (2012)

    Article  MathSciNet  Google Scholar 

  16. Wang, T., Wang, X.: Generalized synchronization of fractional order hyperchotic Lorenz system. Mod. Phys. Lett. B 23(17), 2167–2178 (2009)

    Article  Google Scholar 

  17. He, S., Sun, K., Wang, H.: Solution and dynamics analysis of a fractional-order hyperchaotic system. Math. Methods Appl. Sci. 39(11), 2965–2973 (2016)

    Article  MathSciNet  Google Scholar 

  18. He, D., Parthasarathy, R., Li, H., Geng, Z.: A fast image encryption algorithm based on logistic mapping and hyperchaotic Lorenz system for clear text correlation. IEEE Access 11, 91441–91453 (2023)

    Article  Google Scholar 

  19. Yousefpour, A., Jahanshahi, H., Castillo, O.: Application of variable-order fractional calculus in neural networks: where do we stand? Eur. Phys. J. Spl. Top. 231, 1753–1756 (2022)

    Article  Google Scholar 

  20. Pérez, J.E.S., Aguilar, J.F.G., Atangana, A.: Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag–Leffler laws. Chaos Solitons Fract. 114, 175–185 (2018)

    Article  MathSciNet  Google Scholar 

  21. Akgül, A., Inc, M., Baleanu, D.: On solutions of variable-order fractional differential equations. Int. J. Optim. Control 7(1), 112–116 (2017)

    MathSciNet  Google Scholar 

  22. Kumar, S., Chauhan, R.P., Momani, S.: Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Partial Differ. Equ. 40(1), e22707 (2024)

    Article  MathSciNet  Google Scholar 

  23. Sajjadi, S.S., Baleanu, D., Jajarmi, A., Pirouz, H.M.: A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos Solitons Fract. 138, 109919 (2020)

    Article  MathSciNet  Google Scholar 

  24. David, S.A.: Fractional Euler–Lagrange equations applied to oscillatory systems. Mathematics 3(2), 258–272 (2015)

    Article  Google Scholar 

  25. Ugalde, H.M.R., Corbier, C.: Robust estimation of balanced simplicity-accuracy neural networks-based models. J. Dyn. Syst. Meas. Control 138(5), 051001 (2016)

    Article  Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, vol. 25 (2012)

  27. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. Comput. Vis. Pattern Recogn. (CVPR), pp. 3642–3649 (2012)

  28. Das, T., Kar, I.N.: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)

    Article  Google Scholar 

  29. Chen, M., Ge, S.S., How, B.V.E.: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)

    Article  Google Scholar 

  30. Ugalde, H.M.R., Carmona, J.C., Alvarado, V.M., Reyes, J.R.: Neural network design and model reduction approach for black box nonlinear system identification with reduced number of parameters. Neurocomputing 101, 170–180 (2013)

    Article  Google Scholar 

  31. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  32. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  33. Bukhari, A.H., Raja, M.A.Z., Rafiq, N., Shoaib, M., Kiani, A.K., Shu, C.M.: Design of intelligent computing networks for nonlinear chaotic fractional Rossler system. Chaos Solitons Fract. 157, 111985 (2022)

    Article  MathSciNet  Google Scholar 

  34. Bukhari, A.H., Shoaib, M., Kiani, A.K., Chaudhary, N.I., Raja, M.A.Z., Shu, C.M.: Dynamical analysis of nonlinear fractional order Lorenz system with a novel design of intelligent solution predictive radial base networks. Math. Comput. Simul. 213, 324–347 (2023)

    Article  MathSciNet  Google Scholar 

  35. Gutman, Y., Qiao, Y., Szabó, G.: The embedding problem in topological dynamics and Takens’ theorem. arXiv preprint 31(2), 597–620 (2018)

    MathSciNet  Google Scholar 

  36. Vadlamudi, C. V., Vadlamudi, S. D.: Computational analysis and understanding of natural languages: principles, methods and applications, Chapter 4—mathematical essentials. Elsevier, (38) pp. 53–73 (2018)

  37. Almeida, R., Tavares, D., Torres, D.F.M.: The Variable-Order Fractional Calculus of Variations. Springer, Cham (2019)

    Book  Google Scholar 

  38. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    Article  MathSciNet  Google Scholar 

  39. Gutierrez, R. E., Rosário, J. M.: Fractional order calculus: basic concepts and engineering applications. Mathematical problems in engineering (2010)

  40. Moghaddam, B. P., Yaghoobi, S.: An extended predictor corrector algorithm for variable order fractional delay differential equations. Am. Soc. Mech. Eng. pp. 1–11 (2016)

  41. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–9 (2016)

    Article  Google Scholar 

  42. Zheng, X., Wang, H., Fu, H.: Well-posedness of fractional differential equations with variable-order Caputo–Fabrizio derivative. Chaos Solitons Fract. 138, 109966 (2020)

    Article  MathSciNet  Google Scholar 

  43. Shi, W.: Detection, fault, supervision and safety of technical processes: Lyapunov exponent analysis to chaotic phenomena of marine power system. Elsevier Sci. Limited 2007, 1497–1502 (2006)

    Google Scholar 

  44. Rosenstein, M.T., Collins, J.J., Luca, C.J.D.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65(1), 117–134 (1993)

    Article  MathSciNet  Google Scholar 

  45. Atangana, A.: Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination? Chaos Solitons Fract. 136, 109860 (2020)

    Article  MathSciNet  Google Scholar 

  46. Liping, C., Khan, M.A., Atangana, A., Kumar, S.: A new financial chaotic model in Atangana–Baleanu stochastic fractional differential equations. Alex. Eng. J. 60(6), 5193–5204 (2021)

    Article  Google Scholar 

  47. Jhangeer, A., Munawar, M., Atangana, A., Riaz, M.B.: Analysis of electron acoustic waves interaction in the presence of homogeneous unmagnetized collision-free plasma. Phys. Scr. 96(7), 075603 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and anonymous reviewers for reviewing the manuscript and providing constructive comments for improvement.

Funding

This research work has received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zia Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awais, M., Khan, M.A. & Bashir, Z. Exploring the stochastic patterns of hyperchaotic Lorenz systems with variable fractional order and radial basis function networks. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04431-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04431-5

Keywords

Navigation