Skip to main content
Log in

Adsorption of Molecular Oxygen on N-graphene

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The adsorption and dissociation of molecular oxygen on the surface of N-graphene/Au/Ni(111) epitaxial system with high crystalline quality of N-graphene have been investigated. The system is formed in such a way that nitrogen impurities in it are exclusively represented by graphitic and pyridinic configurations in equal concentrations. Using X-ray photoelectron spectroscopy and density functional theory calculations, the relationship between the chemical shift of the N 1s core level caused by the adsorption of molecular oxygen and the atomic position of individual oxygen atoms after molecular dissociation has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. M. Shao, Q. Chang, J.-P. Dodelet, et al., Chem. Rev. 116, 3594 (2016). https://doi.org/10.1021/acs.chemrev.5b00462

    Article  Google Scholar 

  2. X. Tian, X. F. Lu, B. Y. Xia, et al., Joule 4, 45 (2020). https://doi.org/10.1016/j.joule.2019.12.014

    Article  Google Scholar 

  3. D. Wu, X. Shen, Y. Pan, et al., ChemNanoMat 6, 32 (2020). https://doi.org/10.1002/cnma.201900319

    Article  Google Scholar 

  4. R. Ma, G. Lin, Y. Zhou, et al., npj Comput. Mater. 5, 78 (2019). https://doi.org/10.1038/s41524-019-0210-3

    Article  Google Scholar 

  5. J. Duan, S. Chen, M. Jaroniec, et al., ACS Catal. 5, 5207 (2015). https://doi.org/10.1021/acscatal.5b00991

    Article  Google Scholar 

  6. H. B. Yang, J. Miao, S.-F. Hung, et al., Sci. Adv. 2, e1501122 (2016). https://doi.org/10.1126/sciadv.1501122

  7. S. V. Doronin, A. A. Volykhov, A. I. Inozemtseva, et al., J. Phys. Chem. C 124, 6038 (2020). https://doi.org/10.1021/acs.jpcc.9b09668

    Article  Google Scholar 

  8. L. Zhang and Z. Xia, J. Phys. Chem. C 115, 11170 (2011). https://doi.org/10.1021/jp201991j

    Article  Google Scholar 

  9. Y. Zhang, J. Ge, L. Wang, et al., Sci. Rep. 3, 2771 (2013). https://doi.org/10.1038/srep02771

    Article  Google Scholar 

  10. J. Vazquez-Arenas, A. Galano, D. U. Lee, et al., J. Mater. Chem. A 4, 976 (2016). https://doi.org/10.1039/C5TA06653K

    Article  Google Scholar 

  11. Á. Ganyecz and M. Kállay, J. Phys. Chem. C 125, 8551 (2021). https://doi.org/10.1021/acs.jpcc.0c11340

    Article  Google Scholar 

  12. M. Skorupska, A. Ilnicka, and J. P. Lukaszewicz, Sci. Rep. 11, 23970 (2021). https://doi.org/10.1038/s41598-021-03403-8

    Article  ADS  Google Scholar 

  13. D. Yu. Usachov, O. Yu. Vilkov, A. Grüneis, et al., Nano Lett. 11, 5401 (2011). doihttps://doi.org/10.1021/nl2031037

    Article  ADS  Google Scholar 

  14. X.-F. Li, K.-Y. Lian, L. Liu, et al., Sci. Rep. 6, 23495 (2016). https://doi.org/10.1038/srep23495

    Article  ADS  Google Scholar 

  15. B. Li, S. Zhang, C. Cui, et al., Energy Fuels. 37, 902 (2023). https://doi.org/10.1021/acs.energyfuels.2c03517

    Article  Google Scholar 

  16. G. Deokar, J. Jin, U. Schwingenschlögl, et al., npj 2D Mater. Appl. 6, 14 (2022). https://doi.org/10.1038/s41699-022-00287-8

    Article  Google Scholar 

  17. S. Casolo, R. Martinazzo, and G. F. Tantardini, J. Phys. Chem. C 115, 3250 (2011). https://doi.org/10.1021/jp109741s

    Article  Google Scholar 

  18. T. Schiros, D. Nordlund, L. Pálová, et al., Nano Lett. 12, 4025 (2012). https://doi.org/10.1021/nl301409h

    Article  ADS  Google Scholar 

  19. S. Ni, Z. Lia, and J. Yang, Nanoscale 4, 1184 (2012). https://doi.org/10.1039/C1NR11086A

    Article  ADS  Google Scholar 

  20. H. J. Yan, B. Xu, S. Q. Shi, et al., J. Appl. Phys. 112, 104316 (2012). https://doi.org/10.1063/1.4766919

  21. S. Jalili and R. Vaziri, Mol. Phys. 109, 687 (2011). https://doi.org/10.1080/00268976.2010.547523

    Article  ADS  Google Scholar 

  22. Q. Lv, N. Wang, W. Si, et al., Appl. Catal. B Environ. 261, 118234 (2020). https://doi.org/10.1016/j.apcatb.2019.118234

  23. D. Srivastava, T. Susi, M. Borghei, et al., RSC Adv. 4, 15225 (2014). https://doi.org/10.1039/c3ra47784c

    Article  ADS  Google Scholar 

  24. M. Yang, L. Wang, M. Li, et al., AIP Adv. 5, 067136 (2015). https://doi.org/10.1063/1.4922841

  25. M. Scardamaglia, T. Susi, C. Struzzi, et al., Sci. Rep. 7, 7960 (2017). https://doi.org/10.1038/s41598-017-08651-1

    Article  ADS  Google Scholar 

  26. H. Niwa, K. Horiba, Y. Harada, et al., J. Power Sources 187, 93 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.064

    Article  ADS  Google Scholar 

  27. L. Lai, J. R. Potts, D. Zhan, et al., Energy Environ. Sci. 5, 7936 (2012). https://doi.org/10.1039/C2EE21802J

    Article  Google Scholar 

  28. C. Zhang, R. Hao, H. Liao, et al., Nano Energy 2, 88 (2013). https://doi.org/10.1016/j.nanoen.2012.07.021

    Article  Google Scholar 

  29. N. Wang, B. Lu, L. Li, et al., ACS Catal. 8, 6827 (2018). https://doi.org/10.1021/acscatal.8b00338

    Article  Google Scholar 

  30. E. Haque, A. Zavabeti, N. Uddin, et al., Chem. Mater. 32, 1384 (2020). https://doi.org/10.1021/acs.chemmater.9b03354

    Article  Google Scholar 

  31. S. Kundu, T. C. Nagaiah, W. Xia, et al., J. Phys. Chem. C 113, 14302 (2009). https://doi.org/10.1021/jp811320d

    Article  Google Scholar 

  32. C. V. Rao, C. R. Cabrera, and Y. Ishikawa, J. Phys. Chem. Lett. 1, 2622 (2010). https://doi.org/10.1021/jz100971v

    Article  Google Scholar 

  33. T. Xing, Y. Zheng, L. H. Li, et al., ACS Nano 8, 6856 (2014). https://doi.org/10.1021/nn501506p

    Article  Google Scholar 

  34. D. Guo, R. Shibuya, C. Akiba, et al., Science 351, 361 (2016). https://doi.org/10.1126/science.aad0832

    Article  ADS  Google Scholar 

  35. L. Li, P. Dai, X. Gu, et al., J. Mater. Chem. A 5, 789 (2017). https://doi.org/10.1039/C6TA08016B

    Article  Google Scholar 

  36. T. Wang, Z.-X. Chen, Y.-G. Chen, et al., ACS Energy Lett. 3, 986 (2018). https://doi.org/10.1021/acsenergylett.8b00258

    Article  ADS  Google Scholar 

  37. D. Jain, Q. Zhang, J. Hightower, et al., ChemCatChem 11, 5945 (2019). https://doi.org/10.1002/cctc.201901883

    Article  Google Scholar 

  38. D. Yu. Usachov, A. V. Fedorov, O. Yu. Vilkov, et al., Phys. Solid State 55, 1325 (2013). https://doi.org/10.1134/S1063783413060310

    Article  ADS  Google Scholar 

  39. D. Yu. Usachov, A. Fedorov, O. Yu. Vilkov, et al., Nano Lett. 14, 4982 (2014). https://doi.org/10.1021/nl501389h

    Article  ADS  Google Scholar 

  40. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396

    Article  ADS  Google Scholar 

  41. K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999). https://doi.org/10.1103/PhysRevB.59.1743

    Article  ADS  Google Scholar 

  42. O. Yu. Vilkov, A. V. Tarasov, K. A. Bokai, et al., Carbon 183, 711 (2021). https://doi.org/10.1016/j.carbon.2021.07.038

    Article  Google Scholar 

  43. W. Zhao, O. Höfert, K. Gotterbarm, et al., J. Phys. Chem. C 116, 5062 (2012). https://doi.org/10.1021/jp209927m

    Article  Google Scholar 

  44. R. J. Koch, M. Weser, W. Zhao, et al., Phys. Rev. B 86, 075401 (2012). https://doi.org/10.1103/PhysRevB.86.075401

  45. A. Grüneis, K. Kummer, and D. V. Vyalikh, New J. Phys. 11, 073050 (2009). https://doi.org/10.1088/1367-2630/11/7/073050

  46. M. Wie, Q. Fu, Y. Yang, et al., J. Phys. Chem. C 119, 13590 (2015). https://doi.org/10.1021/acs.jpcc.5b01395

    Article  Google Scholar 

  47. N. A. Vinogradov, K. Schulte, M. L. Ng, et al., J. Phys. Chem. C 115, 9568 (2011). https://doi.org/10.1021/jp111962k

    Article  Google Scholar 

  48. R. Larciprete, P. Lacovig, S. Gardonio, et al., J. Phys. Chem. C 116, 9900 (2012). https://doi.org/10.1021/jp2098153

    Article  Google Scholar 

  49. J. L. Jordan, C. A. Kovac, J. F. Morar, et al., Phys. Rev. B 36, 1369 (1987). https://doi.org/10.1103/PhysRevB.36.1369

    Article  ADS  Google Scholar 

  50. R. Arrigo, M. Hävecker, S. Wrabetz, et al., J. Am. Chem. Soc. 132, 9616 (2010). https://doi.org/10.1021/ja910169v

    Article  Google Scholar 

  51. X. Fan, C. Yu, J. Yang, et al., Carbon 70, 130 (2014). https://doi.org/10.1016/j.carbon.2013.12.081

    Article  Google Scholar 

  52. N. Díez, A. Śliwak, S. Gryglewicz, et al., RSC Adv. 5, 81831 (2015). https://doi.org/10.1039/C5RA14461B

    Article  ADS  Google Scholar 

  53. O. O. Kapitanova, E. Y. Kataev, D. Yu. Usachov, et al., J. Phys. Chem. C 121, 27915 (2017). https://doi.org/10.1021/acs.jpcc.7b07840

    Article  Google Scholar 

  54. M. Hossain, J. Johns, K. Bevan, et al., Nat. Chem. 4, 305 (2012). https://doi.org/10.1038/nchem.1269

    Article  Google Scholar 

  55. Y. Dai, S. Ni, Z. Li, et al., J. Phys.: Condens. Matter 25, 405301 (2013). https://doi.org/10.1088/0953-8984/25/40/405301

  56. B. P. Payne, M. C. Biesinger, and N. S. McIntyre, J. Electron Spectrosc. Relat. Phenom. 175, 55 (2009). https://doi.org/10.1016/j.elspec.2009.07.006

    Article  Google Scholar 

  57. B. P. Payne, M. C. Biesinger, and N. S. McIntyre, J. Electron Spectrosc. Relat. Phenom. 185, 159 (2012). https://doi.org/10.1016/j.elspec.2012.06.008

    Article  Google Scholar 

  58. V. O. Shevelev, K. A. Bokai, A. A. Makarova, et al., J. Phys. Chem. C 124, 17103 (2020). https://doi.org/10.1021/acs.jpcc.0c04830

    Article  Google Scholar 

  59. K. A. Bokai, V. O. Shevelev, D. Marchenko, et al., Appl. Surf. Sci. 565, 150476 (2021). https://doi.org/10.1016/j.apsusc.2021.150476

Download references

Funding

This work was supported by St. Petersburg State University (grant no. 94031444) and by Helmholtz-Zentrum Berlin für Materialien und Energie within the bilateral Russian–German Laboratory program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bokai.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Dedicated to the 300th anniversary of St. Petersburg State University

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokai, K.A., Vilkov, O.Y. & Usachov, D.Y. Adsorption of Molecular Oxygen on N-graphene. Crystallogr. Rep. 69, 102–108 (2024). https://doi.org/10.1134/S1063774523601314

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523601314

Navigation