Skip to main content
Log in

Sensitize BiVO4 with rhodamine B using BiOCl as a bridge to yield more photoelectrons for photoelectrochemical application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

One approach that shows promising for producing hydrogen fuel from solar energy is photoelectrochemical (PEC) water splitting. The main challenge is to design effective photoanodes. Although bismuth vanadate (BiVO4) is an ideal photoanode in terms of absorbing visible light, serious electron–hole recombination and poor charge transport limit its application as a photoanode of PEC. Dye sensitization is the key method to improve electron transfer and light utilization. Herein, an enhanced dye (rhodamine B, RhB)-sensitized BiVO4/BiOCl system was explored. The results show that the process of RhB sensitization BiVO4 requires BiOCl as a bridge. The RhB-sensitized BiVO4/BiOCl system exhibits excellent photoelectrochemical activity, which is attributed to its enhanced photoinduced electron transport and wider visible light response range. This inspiration comes from the mythical story of China, "Cowherd and the Weaver Girl Meet at the Magpie Bridge". The combination of dye sensitization and BiVO4/BiOCl heterojunction explored an energy-saving, efficient and green light-induced system to improve the PEC efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li, J. Bai, B. Zhou, Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem. Eng. J. 403, 126350 (2021)

    Article  Google Scholar 

  2. Q. Qin, Q. Cai, W. Hong, C. Jian, W. Liu, Improved hole extraction and durability of BiVO4 photoanode for solar water splitting under extreme pH condition. Chem. Eng. J. 402, 126227 (2020)

    Article  Google Scholar 

  3. S. Majumder, N.D. Quang, C. Kim, D. Kim, Anion exchange and successive ionic layer adsorption and reaction-assisted coating of BiVO4 with Bi2S3 to produce nanostructured photoanode for enhanced photoelectrochemical water splitting. J. Colloid Interface Sci. 585, 72–84 (2021)

    Article  ADS  Google Scholar 

  4. J. Tang, J.R. Durrant, D.R. Klug, Mechanism of photocatalytic water splitting in TiO2 reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130, 13885–13891 (2008)

    Article  Google Scholar 

  5. P. Guan, H. Bai, F. Wang, H. Yu, D. Xu, W. Fan, W. Shi, In-situ anchoring Ag through organic polymer for configuring efficient plasmonic BiVO4 photoanode. Chem. Eng. J. 358, 658–665 (2019)

    Article  Google Scholar 

  6. S. Wang, P. Chen, J.H. Yun, Y. Hu, L. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem. Int. Ed. 56, 8500–8504 (2017)

    Article  Google Scholar 

  7. Q. Meng, B. Zhang, L. Fan, H. Liu, M. Valvo, K. Edstrom, M. Cuartero, R. de Marco, G.A. Crespo, L. Sun, Efficient BiVO4 photoanodes by postsynthetic treatment: remarkable improvements in photoelectrochemical performance from facile borate modification. Angew. Chem. Int. Ed. Engl. 58, 19027–19033 (2019)

    Article  Google Scholar 

  8. X. Zhang, T. Peng, S. Song, Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J. Mater. Chem. A 4, 2365–2402 (2016)

    Article  Google Scholar 

  9. Y. Li, X. Zheng, J. Yang, Z. Zhao, S. Cui, Enhanced photocatalytic degradation of 2,4,6-trichlorophenol and RhB with RhB-sensitized BiOClBr catalyst based on response surface methodology. J. Taiwan Inst. Chem. Eng. 119, 213–223 (2021)

    Article  Google Scholar 

  10. X. Zhang, X.B. Wang, L.W. Wang, W.K. Wang, L.L. Long, W.W. Li, H.Q. Yu, Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing 001 facets. ACS Appl. Mater. Interfaces 6, 7766–7772 (2014)

    Article  Google Scholar 

  11. G. Li, F. Qin, R. Wang, S. Xiao, H. Sun, R. Chen, BiOX (X=Cl, Br, I) nanostructures: mannitol-mediated microwave synthesis, visible light photocatalytic performance, and Cr(VI) removal capacity. J. Colloid Interface Sci. 409, 43–51 (2013)

    Article  ADS  Google Scholar 

  12. K. Zhao, L. Zhang, J. Wang, Q. Li, W. He, J.J. Yin, Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 135, 15750–15753 (2013)

    Article  Google Scholar 

  13. D.H. Wang, G.Q. Gao, Y.W. Zhang, L.S. Zhou, A.W. Xu, W. Chen, Nanosheet-constructed porous BiOCl with dominant 001 facets for superior photosensitized degradation. Nanoscale 4, 7780–7785 (2012)

    Article  ADS  Google Scholar 

  14. J.H. Kim, J.W. Jang, Y.H. Jo, F.F. Abdi, Y.H. Lee, R. van de Krol, J.S. Lee, Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat. Commun. 7, 13380 (2016)

    Article  ADS  Google Scholar 

  15. X. Zhang, X. Quan, S. Chen, Y. Zhang, Effect of Si doping on photoelectrocatalytic decomposition of phenol of BiVO4 film under visible light. J. Hazard. Mater. 177, 914–917 (2010)

    Article  Google Scholar 

  16. X. Zhang, S. Chen, X. Quan, H. Zhao, Preparation and characterization of BiVO4 film electrode and investigation of its photoelectrocatalytic (PEC) ability under visible light. Sep. Purif. Technol. 64, 309–313 (2009)

    Article  Google Scholar 

  17. Y. Miyase, S. Iguchi, Y. Miseki, T. Gunji, K. Sayama, Electrochemical H2O2 production and accumulation from H2O by composite effect of Al2O3 and BiVO4. J. Electrochem. Soc. 166, H644–H649 (2019)

    Article  Google Scholar 

  18. C. Liu, J. Zhou, J. Su, L. Guo, Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance. Appl. Catal. B Environ. 241, 506–513 (2019)

    Article  Google Scholar 

  19. L. Shan, Y. Liu, J. Suriyaprakash, C. Ma, Z. Wu, L. Dong, L. Liu, Highly efficient photocatalytic activities, band alignment of BiVO4/BiOCl 001 prepared by in situ chemical transformation. J. Mol. Catal. A Chem 411, 179–187 (2016)

    Article  Google Scholar 

  20. R. Jiang, D. Wu, G. Lu, Z. Yan, J. Liu, R. Zhou, M. Nkoom, Fabrication of Fe3O4 quantum dots modified BiOCl/BiVO4 p-n heterojunction to enhance photocatalytic activity for removing broad-spectrum antibiotics under visible light. J. Taiwan Inst. Chem. Eng. 96, 681–690 (2019)

    Article  Google Scholar 

  21. Q. Su, L. Zhu, M. Zhang, Y. Li, S. Liu, J. Lin, F. Song, W. Zhang, S. Zhu, J. Pan, Construction of a bioinspired hierarchical BiVO4/BiOCl heterojunction and its enhanced photocatalytic activity for phenol degradation. ACS Appl. Mater. Interfaces 13, 32906–32915 (2021)

    Article  Google Scholar 

  22. M. Zhu, Q. Liu, W. Chen, Y. Yin, L. Ge, H. Li, K. Wang, Boosting the visible-light photoactivity of BiOCl/BiVO4/N-GQD ternary heterojunctions based on internal Z-scheme charge transfer of N-GQDs: simultaneous band gap narrowing and carrier lifetime prolonging. ACS Appl. Mater. Interfaces 9, 38832–38841 (2017)

    Article  Google Scholar 

  23. C. Feng, D. Wang, B. Jin, Z. Jiao, The enhanced photocatalytic properties of BiOCl/BiVO4 p-n heterojunctions via plasmon resonance of metal Bi. RSC Adv. 5, 75947–75952 (2015)

    Article  ADS  Google Scholar 

  24. Y. Li, L. Fang, R. Jin, Y. Yang, X. Fang, Y. Xing, S. Song, Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale 7, 758–764 (2015)

    Article  ADS  Google Scholar 

  25. Y. He, J. Cai, T. Li, Y. Wu, Y. Yi, M. Luo, L. Zhao, Synthesis, characterization, and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation. Ind. Eng. Chem. Res. 51, 14729–14737 (2012)

    Article  Google Scholar 

  26. J. Cai, Y. He, X. Wang, L. Zhang, L. Dong, H. Lin, L. Zhao, X. Yi, W. Weng, H. Wan, Photodegradation of RhB over YVO4/g-C3N4 composites under visible light irradiation. RSC Adv. 3, 20862 (2013)

    Article  ADS  Google Scholar 

  27. R. Sánchez-de-Armas, J. Oviedo, M.Á. San Miguel, J.F. Sanz, Direct vs indirect mechanisms for electron injection in dye-sensitized solar cells, J. Phys. Chem. C 115 (2011)

  28. N. Agnieszka, K. Stanislaw, Electronic excited state of alizarin dye adsorbed on TiO2 nanoparticles: a study by electroabsorption (stark effect) spectroscopy. J. Phys. Chem. C 112, 10233–10241 (2008)

    Article  Google Scholar 

  29. W.R. Duncan, O.V. Prezhdo, Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu. Rev. Phys. Chem. 58, 143–184 (2007)

    Article  ADS  Google Scholar 

  30. X. Lv, K. Nie, H. Lan, X. Li, Y. Li, X. Sun, J. Zhong, S.-T. Lee, Fe2TiO5-incorporated hematite with surface p-modification for high efficiency solar water splitting. Nano Energy 32, 526–532 (2017)

    Article  Google Scholar 

  31. H. She, P. Yue, X. Ma, J. Huang, L. Wang, Q. Wang, Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Appl. Catal. B Environ. 263, 118280 (2020)

    Article  Google Scholar 

  32. M.R. da Silva Pelissari, L.V.A. Scalvi, V.S.L. Neto, L.H. Dallntonia, Evaluation of the heterostructure ITO/BiVO4 under blue monochromatic light irradiation for photoelectrochemical application. J. Mater. Sci. Mater. Electron. 31, 2833–2844 (2020)

    Article  Google Scholar 

  33. C. Ma, J. Lee, Y. Kim, W. Cheol Seo, H. Jung, W. Yang, Rational design of alpha-Fe2O3 nanocubes supported BiVO4 Z-scheme photocatalyst for photocatalytic degradation of antibiotic under visible light. J. Colloid Interface Sci. 581, 514–522 (2021)

    Article  ADS  Google Scholar 

  34. Y. Zhang, Y. Li, D. Ni, Z. Chen, X. Wang, Y. Bu, J.P. Ao, Improvement of BiVO4 photoanode performance during water photo-oxidation using Rh-doped SrTiO3 perovskite as a co-catalyst. Adv. Funct. Mater. 29, 1902101 (2019)

    Article  Google Scholar 

  35. K. Sun, S. Shen, J.S. Cheung, X. Pang, N. Park, J. Zhou, Y. Hu, Z. Sun, S.Y. Noh, C.T. Riley, P.K. Yu, S. Jin, D. Wang, Si photoanode protected by a metal modified ITO layer with ultrathin NiOx for solar water oxidation. Phys. Chem. Chem. Phys. 16, 4612–4625 (2014)

    Article  Google Scholar 

  36. M. Benjamin, K. Prashant, Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 3, 3437–3446 (2009)

    Article  Google Scholar 

  37. B. Juan, Z. Arie, G. Miri, Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J. Am. Chem. Soc. 126, 13550–13559 (2004)

    Article  Google Scholar 

  38. Y. Lin, Y. Xu, M.T. Mayer, Z.I. Simpson, G. McMahon, S. Zhou, D. Wang, Growth of p-Type hematite by atomic layer deposition and its utilization for improved solar water splitting. J. Am. Chem. Soc. 134, 5508–5511 (2012)

    Article  Google Scholar 

  39. M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, K. Domen, Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for Improved solar water oxidation. J. Am. Chem. Soc. 137, 5053–5060 (2015)

    Article  Google Scholar 

  40. J. Huang, W. Luo, W. Ma, X. Yuan, Fabrication of BiVO4 photoanode catalyzed with bimetallic sulfide nanoparticles for enhanced photoelectrochemical water oxidation. Int. J. Hydrog. EnergyHydrog. Energy 47, 17600–17610 (2022)

    Article  Google Scholar 

  41. H. Zhao, X. Liu, Y. Dong, H. Li, R. Song, Y. Xia, H. Wang, A novel visible-light-driven ternary Ag@Ag2O/BiOCl Z-scheme photocatalyst with enhanced removal efficiency of RhB. New J. Chem. 43, 13929–13937 (2019)

    Article  Google Scholar 

  42. S. Sultana, S. Mansingh, K.M. Parida, Facile synthesis of CeO2 nanosheets decorated upon BiOI microplate: a surface oxygen vacancy promoted Z-scheme-based 2D–2D nanocomposite photocatalyst with enhanced photocatalytic activity. J. Phys. Chem. C 122, 808–819 (2017)

    Article  Google Scholar 

  43. X. Zhao, Y. Su, X. Qi, X. Han, A facile method to prepare novel Ag2O/Ag2CO3 three-dimensional hollow hierarchical structures and their water purification function. ACS Sustain. Chem. Eng. 5, 6148–6158 (2017)

    Article  Google Scholar 

  44. F.-T. Li, Q. Wang, X.-J. Wang, B. Li, Y.-J. Hao, R.-H. Liu, D.-S. Zhao, In-situ one-step synthesis of novel BiOCl/Bi24O31Cl10 heterojunctions via self-combustion of ionic liquid with enhanced visible-light photocatalytic activities. Appl. Catal. B Environ. 150–151, 574–584 (2014)

    Article  Google Scholar 

  45. L. Yu, X. Zhang, G. Li, Y. Cao, Y. Shao, D. Li, Highly efficient Bi2O2CO3/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light. Appl. Catal. B Environ. 187, 301–309 (2016)

    Article  Google Scholar 

  46. Z. He, Y. Shi, C. Gao, L. Wen, J. Chen, S. Song, BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J. Phys. Chem. C 118, 389–398 (2013)

    Article  Google Scholar 

  47. C.Y. Sheng, H. Stephen, S. Larry, Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. Environ. Sci. Technol. 39, 1201–1208 (2005)

    Article  Google Scholar 

  48. G. Dai, J. Yu, G. Liu, Synthesis and enhanced visible-light photoelectrocatalytic activity of p–n junction BiOI/TiO2 nanotube arrays. J. Phys. Chem. C 115, 7339–7346 (2011)

    Article  Google Scholar 

  49. S. Chai, G. Zhao, Y.N. Zhang, Y. Wang, F. Nong, M. Li, D. Li, Selective photoelectrocatalytic degradation of recalcitrant contaminant driven by an n-p heterojunction nanoelectrode with molecular recognition ability. Environ. Sci. Technol. 46, 10182–10190 (2012)

    Article  ADS  Google Scholar 

  50. J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31, 1806938 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (no. 11747069) and the Foundation of Henan Educational Committee (no. 23A140007) for this research.

Author information

Authors and Affiliations

Authors

Contributions

JS: investigation, formal analysis, data curation, conceived of the presented idea and supervised the project. YC: validation, supervision, writing—original draft. FW: editing and revise the manuscript. XW: supervised the project, participated in conceptualization, proof reading.

Corresponding author

Correspondence to Jun Shang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Cheng, Y., Wang, F. et al. Sensitize BiVO4 with rhodamine B using BiOCl as a bridge to yield more photoelectrons for photoelectrochemical application. Appl. Phys. A 130, 311 (2024). https://doi.org/10.1007/s00339-024-07471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07471-1

Keywords

Navigation