Skip to main content
Log in

Durable Design of Superhydrophobic Coatings with TiO2 Particles and Al2O3 Whiskers for the Enhanced Anti-icing Performance

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Superhydrophobic coatings with high non-wetting properties are widely applied in anti-icing applications. However, the micro-nanostructures on the surfaces of superhydrophobic coatings are fragile under external forces, resulting in reduced durability. Therefore, mechanical strength and durability play a crucial role in the utilization of superhydrophobic materials. In this study, we employed a two-step spraying method to fabricate superhydrophobic FEVE-based coatings with exceptional mechanical durability, utilizing fluorinated TiO2 nanoparticles and fluorinated Al2O3 microwhiskers as the fillers. The composite coating exhibited commendable non-wetting properties, displaying a contact angle of 164.84° and a sliding angle of 4.3°. On this basis, the stability of coatings was significantly improved due to the interlocking effect of Al2O3 whiskers. After 500 tape peeling cycles, 500 sandpaper abrasion tests, and 50 kg falling sand impact tests, the coatings retained superhydrophobicity, exhibiting excellent durability and application capability. Notably, the ice adhesion strength on the coatings was measured at only 65.4 kPa, while the icing delay time reached 271.8 s at -15 °C. In addition, throughout 500 freezing/melting cycles, statistical analysis revealed that the superhydrophobic coatings exhibited a freezing initiation temperature as low as -17.25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data included in this study are available from the corresponding author on reasonable request.

References

  1. Yang, J. F., Long, F., Wang, R. Y., Zhang, X. W., Yuan, Y. X., Hu, W. B., & Liu, L. (2021). Design of mechanical robust superhydrophobic Cu coatings with excellent corrosion resistance and self-cleaning performance inspired by lotus leaf. Colloids Surfaces A-Physicochemical and Engineering Aspects, 627, 127154.

    Article  Google Scholar 

  2. Shen, Y. Z., Wu, X. H., Tao, J., Zhu, C. L., Lai, Y. K., & Chen, Z. (2019). Icephobic materials: Fundamentals, performance evaluation, and applications. Progress in Materials Science, 103, 509–557.

    Article  Google Scholar 

  3. Wei, C. Q., Jin, B. Y., Zhang, Q. H., Zhan, X. L., & Chen, F. Q. (2018). Anti-icing performance of super-wetting surfaces from icing-resistance to ice-phobic aspects: Robust hydrophobic or slippery surfaces. Journal of Alloys and Compounds, 765, 721–730.

    Article  Google Scholar 

  4. Jiang, B., Shen, Y. Z., Tao, J., Xu, Y. J. S., Chen, H. F., Liu, S. Y., & Xie, X. Y. (2021). Patterning configuration of surface hydrophilicity by graphene nanosheet towards the inhibition of ice nucleation and growth. Coatings, 12, 52.

    Article  Google Scholar 

  5. Zheng, H. K., Chang, S. N., & Zhao, Y. Y. (2017). Anti-icing & icephobic mechanism and applications of superhydrophobic/ultra slippery surface. Progress in Chemistry, 29(1), 102–118.

    Google Scholar 

  6. Li, M. Y., Liu, N., Chen, J. H., & Li, Q. L. (2019). Simple construction based on epoxy-bonded super-hydrophobic anti-corrosion coating. Journal of the Taiwan Institute of Chemical Engineers, 95, 682–691.

    Article  Google Scholar 

  7. Li, D. W., Wang, H. Y., Liu, Y., Wei, D. S., & Zhao, Z. X. (2019). Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance. Chemical Engineering Journal, 367, 169–179.

    Article  Google Scholar 

  8. Wang, G. W., Jiang, J. H., Qiao, Y. X., Gu, L., Klu, E. E., Gong, X. Y., Ma, A. B., & Song, D. (2022). Enhanced super-hydrophobicity and corrosion resistance of the one-step hydrothermal synthesized coating on the Mg-9Li alloy: Role of the solid-solution treated substrate. Journal of Alloys and Compounds, 921, 166044.

    Article  Google Scholar 

  9. Milionis, A., Loth, E., & Bayer, I. S. (2016). Recent advances in the mechanical durability of superhydrophobic materials. Advances in Colloid and Interface Science, 229, 57–79.

    Article  Google Scholar 

  10. Bayer, I. S., Brown, A., Steele, A., & Loth, E. (2009). Transforming anaerobic adhesives into highly durable and abrasion resistant superhydrophobic organoclay nanocomposite films: A new hybrid spray adhesive for tough superhydrophobicity. Applied Physics Express, 2(12), 125003.

    Article  Google Scholar 

  11. Wang, L. X., Cui, P. Y., Bi, Z. J., Wang, C., Zhou, B. K., Zheng, L., Niu, H. B., Wang, D. F., & Li, Q. (2022). Superhydrophobic ultra-high molecular weight polyethylene porous material with self-cleaning ability, long-term stability, and high durability. Surface & Coating Technology, 446, 128792.

    Article  Google Scholar 

  12. Jiang, L., Hou, H., He, P. P., Han, S. M., Xiang, M. M., Xiang, P., T., & Tan, X. Y. (2022). The robust superhydrophobic SiO2/Diatomite/PDMS/KH-570/Me-MQ composite coating for self-cleaning application of building surface. Colloids Surfaces A-Physicochemical and Engineering Aspects, 634, 127936.

    Article  Google Scholar 

  13. Wu, X. Y., Yang, F., Gan, J., Zhao, W. Y., & Wu, Y. (2021). A flower-like waterborne coating with self-cleaning, self-repairing properties for superhydrophobic applications. Journal of Materials Research and Technology, 14, 1820–1829.

    Article  Google Scholar 

  14. Davis, A., Yeong, Y. H., Steele, A., Bayer, I. S., & Loth, E. (2014). Superhydrophobic nanocomposite surface topography and ice adhesion. ACS Applied Materials & Interfaces, 6, 9272–9279.

    Article  Google Scholar 

  15. Bayer, I. S. (2020). Mechanisms of surface icing and deicing technologies. Ice adhesion: Mechanism, measurement and mitigation (pp. 325–359). Scrivener Publishing LLC, Massachusetts.

  16. Zhao, J., Sun, R. Y., Liu, C., & Mo, J. L. (2022). Application of ZnO/epoxy resin superhydrophobic coating for buoyancy enhancement and drag reduction. Colloids Surfaces A-Physicochemical and Engineering Aspects, 651, 129714.

    Article  Google Scholar 

  17. Wang, Y. H., Zhang, Z. B., Xu, J. K., & Yu, H. D. (2021). One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surfaced. Surface & Coating Technology, 409, 126801.

    Article  Google Scholar 

  18. Saadatbakhsh, M., Asl, S. J., Kiani, M. J., & Nouri, N. M. (2020). Slip length measurement of pdms/hydrophobic silica superhydrophobic coating for drag reduction application. Surface & Coating Technology, 404, 126428.

    Article  Google Scholar 

  19. Taghvaei, E., Moosavi, A., Borujerdi, A., Daeian, M. A., & Vafaeinejad, S. (2017). Superhydrophobic surfaces with a dual-layer micro- and nanoparticle coating for drag reduction. Energy, 125, 1–10.

    Article  Google Scholar 

  20. Juan, Y. F., Niu, G. S., Yang, Y., Dai, Y. B., Zhang, J., Han, Y. F., & Sun, B. D. (2023). Knowledge-aware design of high-strength aviation aluminum alloys via machine learning. Journal of Materials Research and Technology, 24, 346–361.

    Article  Google Scholar 

  21. Jiang, H. W., Ren, Z. W., Zou, Z. F., Yuan, S., & Yi, Y. L. (2023). Reinforcement effect of cutting process on machined surface quality and performance of aviation aluminum alloy 7075 based on Oxley-Welsh theory. Journal of Manufacturing Processes, 95, 38–52.

    Article  Google Scholar 

  22. Tian, W. M., Li, S. M., Liu, J. H., Yu, M., & Du, Y. J. (2017). Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties. Chinese Journal of Aeronautics, 30(5), 1777–1788.

    Article  Google Scholar 

  23. Krishnan, A., Krishnan, A. V., Ajith, A., & Shibli, S. M. A. (2021). Influence of materials and fabrication strategies in tailoring the anticorrosive property of superhydrophobic coatings. Surfaces and Interfaces, 25, 101238.

    Article  Google Scholar 

  24. Daneshmand, H., Sazgar, A., & Araghchi, M. (2021). Fabrication of robust and versatile superhydrophobic coating by two-step spray method: An experimental and molecular dynamics simulation study. Applied Surface Science, 567, 150825.

    Article  Google Scholar 

  25. Zhang, F., Xu, D., Zhang, D. W., Ma, L. W., Wang, J. K., Huang, Y., Chen, M. D., Qian, H. C., & Li, X. G. (2021). A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO2 hybrids for anti-icing applications. Chemical Engineering Journal, 423, 130238.

    Article  Google Scholar 

  26. Tong, W., Cui, L. L., Qiu, R. X., Yan, C. Q., Liu, Y. T., Wang, N., & Xiong, D. S. (2021). Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates. Journal of Materials Science & Technology, 89, 59–67.

    Article  Google Scholar 

  27. Wei, D. S., Wang, J. G., Liu, Y., Wang, D. W., Li, S. Y., & Wang, H. Y. (2021). Controllable superhydrophobic surfaces with tunable adhesion on mg alloys by a simple etching method and its corrosion inhibition performance. Chemical Engineering Journal, 404, 126444.

    Article  Google Scholar 

  28. Guo, F. Q., Duan, S. W., Wu, D. T., Matsuda, K. J., Wang, T., & Zou, Y. (2021). Facile etching fabrication of superhydrophobic 7055 aluminum alloy surface towards chloride environment anticorrosion. Corrosion Science, 182, 109262.

    Article  Google Scholar 

  29. Liu, L., Kong, G., Zhu, Y. B., & Che, C. S. (2021). Superhydrophobic graphene aerogel beads for adsorption of oil and organic solvents via a convenient in situ sol-gel method. Colloid and Interface Science Communications, 45, 100518.

    Article  Google Scholar 

  30. Ke, C., Zhang, C. H., Wu, X. G., & Jiang, Y. D. (2021). Highly transparent and robust superhydrophobic coatings fabricated via a facile sol-gel process. Thin Solid Films, 723, 138583.

    Article  Google Scholar 

  31. Fan, H. Q., Lu, P., Zhu, X., Behnamian, Y., & Li, Q. (2022). Development of superhydrophobic and corrosion resistant coatings on carbon steel by hydrothermal treatment and fluoroalkyl silane self-assembly. Materials Chemistry and Physics, 290, 126569.

    Article  Google Scholar 

  32. Chu, J. H., Sun, G. X., Tong, L. B., & Jiang, Z. H. (2021). Facile one-step hydrothermal fabrication of Allium giganteum-like superhydrophobic coating on mg alloy with self-cleaning and anti-corrosion properties. Colloids Surfaces A-Physicochemical and Engineering Aspects, 617, 126370.

    Article  Google Scholar 

  33. Kang, C., Lu, H. F., Yuan, S. J., Hong, D. Y., Yan, K. P., & Liang, B. (2012). Superhydrophilicity/superhydrophobicity of nickel micro-arrays fabricated by electroless deposition on an etched porous aluminum template. Chemical Engineering Journal, 203, 1–8.

    Article  Google Scholar 

  34. Mousavi, S. M. A., & Pitchumani, R. (2021). A study of corrosion on electrodeposited superhydrophobic copper surfaces. Corrosion Science, 186, 109420.

    Article  Google Scholar 

  35. Cheng, Y. L., Zuo, X. J., Yuan, X. G., Zhu, H. J., Huang, H. J., Wang, Y. X., & Zhang, Y. F. (2021). Preparation of fluorine silicon copolymer superhydrophobic anticorrosive coating on copper aluminium composite by one step spraying. Materials Letters, 304, 130496.

    Article  Google Scholar 

  36. Xue, F. X., Shi, X. T., Bai, W. X., Li, J., Li, Y. W., Zhu, S. Y., Liu, Y. H., & Feng, L. B. (2022). Enhanced durability and vers atile superhydrophobic coatings via facile one-step spraying technique. Colloids Surfaces A-Physicochemical and Engineering Aspects, 640, 128411.

    Article  Google Scholar 

  37. Zhang, Y., Zhang, Z. T., Yang, J. L., Yue, Y. K., & Zhang, H. F. (2022). Fabrication of superhydrophobic surface on stainless steel by two-step chemical etching. Chemical Physics Letters, 797, 139567.

    Article  Google Scholar 

  38. Zhang, C. Y., Lan, C., Zhang, M., Long, Z. Q., Meng, F. C., & Lin, H. X. (2021). Robust and durable transparent superhydrophobic boehmite (γ-AlOOH) film by a simple hydrothermal method. Ceramics International, 47, 11694–11701.

    Article  Google Scholar 

  39. Zhizhchenko, A. Y., Shabalina, A. V., Aljulaih, A. A., Gurbatov, S. O., Kuchmizhak, A. A., Iwamori, S., & Kulinich, S. A. (2022). Stability of octadecyltrimethoxysilane-based coatings on aluminum alloy surface. Materials, 15, 1804.

    Article  Google Scholar 

  40. Li, H., Lai, J., Yao, M., Leng, Y. M., Wu, Z. D., Zhang, J., Peng, H. L., & Qiu, Z. M. (2022). Development of high performance superhydrophobic coating with excellent corrosion resistance, durability, and self-cleaning properties using M-TiO2@EP composites. Applied Surface Science, 601, 154109.

    Article  Google Scholar 

  41. Cui, M., Qing, Y. Q., Yang, Y. X., Long, C., & Liu, C. (2022). Nanofunctionalized composite-crosslinked epoxy resin for eco-friendly and robust superhydrophobic coating against contaminants. Colloids Surfaces A-Physicochemical and Engineering Aspects, 633, 127914.

    Article  Google Scholar 

  42. Liu, Y. B., Cao, X. F., Shi, J. K., Shen, B. B., Huang, J. Y., Hu, J., Chen, Z., & Lai, Y. K. (2022). Superhydrophobic TPU/CNTs@SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion. Chemical Engineering Journal, 434, 134605.

    Article  Google Scholar 

  43. Dong, X., Zheng, Y., Xie, D. W., & Li, D. H. (2023). Multi-functional mullite fiber-based porous ceramics with a multilevel pore structure assembled by alumina platelets and mullite whiskers. Ceramics International, 49, 847–854.

    Article  Google Scholar 

  44. Wu, Z. W., Shen, Y. Z., Tao, J., Jia, Z. F., Chen, H. F., Jiang, J. W., & Wang, Z. (2021). Green synthesis of mechanical robust superhydrophobic CNT@PU coatings with high flexibility for extensive applications. Journal of Bionic Engineering, 18, 40–54.

    Article  Google Scholar 

  45. Shen, Y., Wu, Z. W., Tao, J., Jia, Z. F., Chen, H. F., Liu, S. Y., Jiang, J. W., & Wang, Z. (2020). Spraying preparation of eco-friendly superhydrophobic coatings with ultra-low water adhesion for effective anti-corrosion and anti-pollution. ACS Applied Materials & Interfaces, 22, 25484–25493.

    Article  Google Scholar 

  46. Joeng, S., & Kim, Y. (2023). Photoswitchable and reusable superhydrophobic/hydrophilic TiO2-coated stainless-steel mesh as oil–water separator. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 676, 132299.

    Article  Google Scholar 

  47. Yang, J. S., Li, H., Yi, Z. D., Liao, M. R., & Qin, Z. Y. (2022). Stable superhydrophobic wood surface constracting by KH580 and nano-Al2O3 on polydopamine coating with two process methods. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 637, 128219.

    Article  Google Scholar 

  48. Xu, P., & Li, X. X. (2021). Fabrication of TiO2/SiO2 superhydrophobic coating for efficient oil/water separation. Journal of Environmental Chemical Engineering, 9, 105538.

    Article  Google Scholar 

  49. Liu, J. G., Fang, X. T., Zhu, C. Y., Xing, X., Cui, G., & Li, Z. L. (2020). Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review. Colloids Surfaces A-Physicochemical and Engineering Aspects, 607, 125498.

    Article  Google Scholar 

  50. Lv, X. S., Qin, Y., Liang, H., Zhao, B. X., He, Y., & Cui, X. M. (2021). A facile method for constructing a superhydrophobic zinc coating on a steel surface with anti-corrosion and drag-reduction properties. Applied Surface Science, 562, 150192.

    Article  Google Scholar 

  51. Zhang, L. P., Xue, X., Zhang, H., Huang, Z. H., & Zhang, Z. (2021). Superhydrophobic surface with excellent mechanical robustness, water impact resistance and hydrostatic pressure resistance by two-step spray-coating technique. Composites Part A-Applied Science and Manufacturing, 146, 106405.

    Article  Google Scholar 

  52. Rezayi, T., & Entezari, M. H. (2016). Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition. Journal of Colloid and Interface Science, 463, 37–45.

    Article  Google Scholar 

  53. Hou, Y. B., & Choy, K. L. (2022). Durable and robust PVDF-HFP/SiO2/CNTs nanocomposites for anti-icing application: Water repellency, icing delay, and ice adhesion. Progress in Organic Coatings, 163, 106637.

    Article  Google Scholar 

  54. Deng, L. C., Wang, Z. W., Niu, Y. X., Luo, F., & Chen, Q. (2024). CNTs-induced superhydrophobic and photothermal coating with long-term durability and self-replenishing property for anti-icing/de-icing. Composites Science and Technology, 245, 110347.

    Article  Google Scholar 

  55. Zhou, L. P., Liu, A. W., Tang, J., Han, Y. N., Kang, J., Li, Y. Q., Kuai, S. W., Xue, X., Chen, N. N., & Liu, H. T. (2023). Mechanically robust liquid-embedded coating with anti-icing/deicing durability. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 674, 131924.

    Article  Google Scholar 

  56. Xiao, T., Wei, K., Wang, Y. D., Jiang, L. H., Xiang, P., Li, X. Y., & Tan, X. Y. (2022). Transparent and durable PDMS(O)/HDTMS anti-icing surfaces derived from candle soot. Surface & Coatings Technology, 445, 128717.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 52075246, U2341264), Natural Science Foundation of Jiangsu Province (No. BK20211568), International Cooperation Project of Jiangsu Province (No. BZ2023045), National Science and Technology Major Project of China (No. J2019-III-0010-0054), Fundamental Research Funds for the Central Universities (No. NE2022005), Liaoning Provincial Key Laboratory of Aircraft Ice Protection (No. XFX20220301), Basic Research Project of Suzhou (No. SJC2022032), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. Project Funded by 2022 large instruments and equipment test fee of Nanjing University of Aeronautics and Astronautics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yizhou Shen or Yaru Ni.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, K., Shen, Y. et al. Durable Design of Superhydrophobic Coatings with TiO2 Particles and Al2O3 Whiskers for the Enhanced Anti-icing Performance. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00516-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00516-4

Keywords

Navigation