skip to main content
survey
Free Access
Just Accepted

Topology-aware Federated Learning in Edge Computing: A Comprehensive Survey

Authors Info & Claims
Online AM:18 April 2024Publication History
Skip Abstract Section

Abstract

The ultra-low latency requirements of 5G/6G applications and privacy constraints call for distributed machine learning systems to be deployed at the edge. With its simple yet effective approach, federated learning (FL) is a natural solution for massive user-owned devices in edge computing with distributed and private training data. FL methods based on FedAvg typically follow a naive star topology, ignoring the heterogeneity and hierarchy of the volatile edge computing architectures and topologies in reality. Several other network topologies exist and can address the limitations and bottlenecks of the star topology. This motivates us to survey network topology-related FL solutions. In this paper, we conduct a comprehensive survey of the existing FL works focusing on network topologies. After a brief overview of FL and edge computing networks, we discuss various edge network topologies as well as their advantages and disadvantages. Lastly, we discuss the remaining challenges and future works for applying FL to topology-specific edge networks.

References

  1. Ali Al-Shuwaili and Osvaldo Simeone. 2017. Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wireless Communications Letters 6, 3 (2017), 398–401.Google ScholarGoogle ScholarCross RefCross Ref
  2. Richard D Alba. 1973. A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology 3, 1 (1973), 113–126.Google ScholarGoogle ScholarCross RefCross Ref
  3. James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 1253–1269.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Aurélien Bellet, Anne-Marie Kermarrec, and Erick Lavoie. 2021. D-Cliques: Compensating NonIIDness in Decentralized Federated Learning with Topology. arXiv preprint arXiv:2104.07365(2021).Google ScholarGoogle Scholar
  5. Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. 2019. Towards federated learning at scale: System design. Proceedings of Machine Learning and Systems 1 (2019), 374–388.Google ScholarGoogle Scholar
  6. Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practical secure aggregation for privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 1175–1191.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Christopher Briggs, Zhong Fan, and Peter Andras. 2020. Federated learning with hierarchical clustering of local updates to improve training on non-IID data. In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–9.Google ScholarGoogle ScholarCross RefCross Ref
  8. Qiming Cao, Xing Zhang, Yushun Zhang, and Yongdong Zhu. 2021. Layered Model Aggregation based Federated Learning in Mobile Edge Networks. In 2021 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  9. Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo, Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. 2020. Tifl: A tier-based federated learning system. In Proceedings of the 29th international symposium on high-performance parallel and distributed computing. 125–136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Zheng Chai, Yujing Chen, Liang Zhao, Yue Cheng, and Huzefa Rangwala. 2020. Fedat: A communication-efficient federated learning method with asynchronous tiers under non-iid data. ArXivorg (2020).Google ScholarGoogle Scholar
  11. Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. 2021. On large-cohort training for federated learning. Advances in Neural Information Processing Systems 34 (2021).Google ScholarGoogle Scholar
  12. Daoyuan Chen, Liuyi Yao, Dawei Gao, Bolin Ding, and Yaliang Li. 2023. Efficient Personalized Federated Learning via Sparse Model-Adaptation. arXiv preprint arXiv:2305.02776(2023).Google ScholarGoogle Scholar
  13. Min Chen and Yixue Hao. 2018. Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications 36, 3(2018), 587–597.Google ScholarGoogle ScholarCross RefCross Ref
  14. Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, et al. 2017. An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing. 1–14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Zhikun Chen, Daofeng Li, Jinkang Zhu, and Sihai Zhang. 2021. DACFL: Dynamic Average Consensus Based Federated Learning in Decentralized Topology. arXiv preprint arXiv:2111.05505(2021).Google ScholarGoogle Scholar
  16. Beongjun Choi, Jy-yong Sohn, Dong-Jun Han, and Jaekyun Moon. 2020. Communication-Computation Efficient Secure Aggregation for Federated Learning. arXiv preprint arXiv:2012.05433(2020).Google ScholarGoogle Scholar
  17. Li Chou, Zichang Liu, Zhuang Wang, and Anshumali Shrivastava. 2021. Efficient and Less Centralized Federated Learning. arXiv preprint arXiv:2106.06627(2021).Google ScholarGoogle Scholar
  18. Xiaoli Chu, David Lopez-Perez, Yang Yang, and Fredrik Gunnarsson. 2013. Heterogeneous cellular networks: theory, simulation and deployment. Cambridge University Press.Google ScholarGoogle Scholar
  19. Peijin Cong, Junlong Zhou, Liying Li, Kun Cao, Tongquan Wei, and Keqin Li. 2020. A survey of hierarchical energy optimization for mobile edge computing: A perspective from end devices to the cloud. ACM Computing Surveys (CSUR) 53, 2 (2020), 1–44.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Yongheng Deng, Feng Lyu, Ju Ren, Yongmin Zhang, Yuezhi Zhou, Yaoxue Zhang, and Yuanyuan Yang. 2021. SHARE: Shaping Data Distribution at Edge for Communication-Efficient Hierarchical Federated Learning. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS). IEEE, 24–34.Google ScholarGoogle ScholarCross RefCross Ref
  21. Jie Ding, Eric Tramel, Anit Kumar Sahu, Shuang Wu, Salman Avestimehr, and Tao Zhang. 2022. Federated learning challenges and opportunities: An outlook. In ICASSP 2022. https://www.amazon.science/publications/federated-learning-challenges-and-opportunities-an-outlookGoogle ScholarGoogle ScholarCross RefCross Ref
  22. Thinh Quang Dinh, Diep N Nguyen, Dinh Thai Hoang, Pham Tran Vu, and Eryk Dutkiewicz. 2021. Enabling large-scale federated learning over wireless edge networks. arXiv preprint arXiv:2109.10489(2021).Google ScholarGoogle Scholar
  23. Benoit Donnet and Timur Friedman. 2007. Internet topology discovery: a survey. IEEE Communications Surveys & Tutorials 9, 4 (2007), 56–69.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yujuan Tan, and Liang Liang. 2020. Self-balancing federated learning with global imbalanced data in mobile systems. IEEE Transactions on Parallel and Distributed Systems 32, 1 (2020), 59–71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ahmed Roushdy Elkordy, Saurav Prakash, and Salman Avestimehr. 2022. Basil: A fast and byzantine-resilient approach for decentralized training. IEEE Journal on Selected Areas in Communications 40, 9(2022), 2694–2716.Google ScholarGoogle ScholarCross RefCross Ref
  26. Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Helen Möllering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi, Thomas Schneider, Hossein Yalame, et al. 2021. SAFELearn: Secure aggregation for private FEderated learning. In 2021 IEEE Security and Privacy Workshops (SPW). IEEE, 56–62.Google ScholarGoogle ScholarCross RefCross Ref
  27. Anousheh Gholami, Nariman Torkzaban, and John S Baras. 2022. Trusted Decentralized Federated Learning. In 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 1–6.Google ScholarGoogle Scholar
  28. Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677(2017).Google ScholarGoogle Scholar
  29. Yinghao Guo, Rui Zhao, Shiwei Lai, Lisheng Fan, Xianfu Lei, and George K Karagiannidis. 2022. Distributed machine learning for multiuser mobile edge computing systems. IEEE Journal of Selected Topics in Signal Processing (2022).Google ScholarGoogle ScholarCross RefCross Ref
  30. Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural network over multiple agents. Journal of Network and Computer Applications 116 (2018), 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  31. Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. 2018. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604(2018).Google ScholarGoogle Scholar
  32. Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and Salman Avestimehr. 2021. Spreadgnn: Serverless multi-task federated learning for graph neural networks. arXiv preprint arXiv:2106.02743(2021).Google ScholarGoogle Scholar
  33. Chaoyang He, Conghui Tan, Hanlin Tang, Shuang Qiu, and Ji Liu. 2019. Central server free federated learning over single-sided trust social networks. arXiv preprint arXiv:1910.04956(2019).Google ScholarGoogle Scholar
  34. Ziqi He, Lei Yang, Wanyu Lin, and Weigang Wu. 2022. Improving Accuracy and Convergence in Group-based Federated Learning on Non-IID Data. IEEE Transactions on Network Science and Engineering (2022).Google ScholarGoogle Scholar
  35. István Hegedűs, Árpád Berta, Levente Kocsis, András A Benczúr, and Márk Jelasity. 2016. Robust decentralized low-rank matrix decomposition. ACM Transactions on Intelligent Systems and Technology (TIST) 7, 4(2016), 1–24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. István Hegedűs, Gábor Danner, and Márk Jelasity. 2019. Gossip learning as a decentralized alternative to federated learning. In IFIP International Conference on Distributed Applications and Interoperable Systems. Springer, 74–90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and Nicholas Lane. 2021. Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout. Advances in Neural Information Processing Systems 34 (2021), 12876–12889.Google ScholarGoogle Scholar
  38. Seyyedali Hosseinalipour, Sheikh Shams Azam, Christopher G Brinton, Nicolo Michelusi, Vaneet Aggarwal, David J Love, and Huaiyu Dai. 2020. Multi-Stage Hybrid Federated Learning over Large-Scale D2D-Enabled Fog Networks. arXiv preprint arXiv:2007.09511(2020).Google ScholarGoogle Scholar
  39. Seyyedali Hosseinalipour, Christopher G Brinton, Vaneet Aggarwal, Huaiyu Dai, and Mung Chiang. 2020. From federated to fog learning: Distributed machine learning over heterogeneous wireless networks. IEEE Communications Magazine 58, 12 (2020), 41–47.Google ScholarGoogle ScholarCross RefCross Ref
  40. Chenghao Hu, Jingyan Jiang, and Zhi Wang. 2019. Decentralized federated learning: A segmented gossip approach. arXiv preprint arXiv:1908.07782(2019).Google ScholarGoogle Scholar
  41. Erdong Hu, Yuxin Tang, Anastasios Kyrillidis, and Chris Jermaine. 2023. Federated Learning Over Images: Vertical Decompositions and Pre-Trained Backbones Are Difficult to Beat. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 19385–19396.Google ScholarGoogle ScholarCross RefCross Ref
  42. Shanfeng Huang, Shuai Wang, Rui Wang, and Kaibin Huang. 2021. Joint Topology and Computation Resource Optimization for Federated Edge Learning. In 2021 IEEE Globecom Workshops (GC Wkshps). IEEE, 1–6.Google ScholarGoogle Scholar
  43. Congfeng Jiang, Tiantian Fan, Honghao Gao, Weisong Shi, Liangkai Liu, Christophe Cerin, and Jian Wan. 2020. Energy aware edge computing: A survey. Computer Communications 151 (2020), 556–580.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jingyan Jiang and Liang Hu. 2020. Decentralised federated learning with adaptive partial gradient aggregation. CAAI Transactions on Intelligence Technology 5, 3 (2020), 230–236.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Jingyan Jiang, Liang Hu, Chenghao Hu, Jiate Liu, and Zhi Wang. 2020. BACombo—Bandwidth-aware decentralized federated learning. Electronics 9, 3 (2020), 440.Google ScholarGoogle ScholarCross RefCross Ref
  46. Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. 2021. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning 14, 1–2(2021), 1–210.Google ScholarGoogle Scholar
  47. Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled averaging for federated learning. In International Conference on Machine Learning. PMLR, 5132–5143.Google ScholarGoogle Scholar
  48. Hanna Kavalionak, Emanuele Carlini, Patrizio Dazzi, Luca Ferrucci, Matteo Mordacchini, and Massimo Coppola. 2021. Impact of Network Topology on the Convergence of Decentralized Federated Learning Systems. In 2021 IEEE Symposium on Computers and Communications (ISCC). IEEE, 1–6.Google ScholarGoogle Scholar
  49. Latif U Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong. 2021. Federated learning for internet of things: Recent advances, taxonomy, and open challenges. IEEE Communications Surveys & Tutorials(2021).Google ScholarGoogle Scholar
  50. Wasiq Khan, Abir Hussain, Bilal Muhammad Khan, and Keeley Crockett. 2023. Outdoor mobility aid for people with visual impairment: Obstacle detection and responsive framework for the scene perception during the outdoor mobility of people with visual impairment. Expert Systems with Applications 228 (2023), 120464.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Fahad Ahmed KhoKhar, Jamal Hussain Shah, Muhammad Attique Khan, Muhammad Sharif, Usman Tariq, and Seifedine Kadry. 2022. A review on federated learning towards image processing. Computers & Electrical Engineering 99 (2022), 107818.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Abbas Kiani and Nirwan Ansari. 2017. Toward hierarchical mobile edge computing: An auction-based profit maximization approach. IEEE Internet of Things Journal 4, 6 (2017), 2082–2091.Google ScholarGoogle ScholarCross RefCross Ref
  53. Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Roughan. 2011. The internet topology zoo. IEEE Journal on Selected Areas in Communications 29, 9(2011), 1765–1775.Google ScholarGoogle ScholarCross RefCross Ref
  54. Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492(2016).Google ScholarGoogle Scholar
  55. Nicolas Kourtellis, Kleomenis Katevas, and Diego Perino. 2020. Flaas: Federated learning as a service. In Proceedings of the 1st Workshop on Distributed Machine Learning. 7–13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:1404.5997(2014).Google ScholarGoogle Scholar
  57. Prabhat Kumar, Govind P Gupta, and Rakesh Tripathi. 2021. PEFL: Deep Privacy-Encoding based Federated Learning Framework for Smart Agriculture. IEEE Micro (2021).Google ScholarGoogle Scholar
  58. Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar. 2018. Fully decentralized federated learning. In Third workshop on Bayesian Deep Learning (NeurIPS).Google ScholarGoogle Scholar
  59. Jin-woo Lee, Jaehoon Oh, Sungsu Lim, Se-Young Yun, and Jae-Gil Lee. 2020. Tornadoaggregate: Accurate and scalable federated learning via the ring-based architecture. arXiv preprint arXiv:2012.03214(2020).Google ScholarGoogle Scholar
  60. Mo Li, Zhenjiang Li, and Athanasios V Vasilakos. 2013. A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proc. IEEE 101, 12 (2013), 2538–2557.Google ScholarGoogle ScholarCross RefCross Ref
  61. Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He. 2021. A survey on federated learning systems: vision, hype and reality for data privacy and protection. IEEE Transactions on Knowledge and Data Engineering (2021).Google ScholarGoogle Scholar
  62. Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair and robust federated learning through personalization. In International Conference on Machine Learning. PMLR, 6357–6368.Google ScholarGoogle Scholar
  63. Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated learning: Challenges, methods, and future directions. IEEE signal processing magazine 37, 3 (2020), 50–60.Google ScholarGoogle Scholar
  64. Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019. On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189(2019).Google ScholarGoogle Scholar
  65. Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, and Qiang Yan. 2020. A blockchain-based decentralized federated learning framework with committee consensus. IEEE Network 35, 1 (2020), 234–241.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Zexi Li, Jiaxun Lu, Shuang Luo, Didi Zhu, Yunfeng Shao, Yinchuan Li, Zhimeng Zhang, and Chao Wu. 2022. Mining Latent Relationships among Clients: Peer-to-peer Federated Learning with Adaptive Neighbor Matching. arXiv preprint arXiv:2203.12285(2022).Google ScholarGoogle Scholar
  67. Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. 2017. Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. arXiv preprint arXiv:1705.09056(2017).Google ScholarGoogle Scholar
  68. Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. 2020. Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials 22, 3 (2020), 2031–2063.Google ScholarGoogle ScholarCross RefCross Ref
  69. Frank Po-Chen Lin, Seyyedali Hosseinalipour, Sheikh Shams Azam, Christopher G Brinton, and Nicolo Michelusi. 2021. Semi-decentralized federated learning with cooperative D2D local model aggregations. IEEE Journal on Selected Areas in Communications (2021).Google ScholarGoogle Scholar
  70. Fang Liu, Guoming Tang, Youhuizi Li, Zhiping Cai, Xingzhou Zhang, and Tongqing Zhou. 2019. A survey on edge computing systems and tools. Proc. IEEE 107, 8 (2019), 1537–1562.Google ScholarGoogle ScholarCross RefCross Ref
  71. Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. 2020. Client-edge-cloud hierarchical federated learning. In ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 1–6.Google ScholarGoogle ScholarCross RefCross Ref
  72. Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. 2019. Edge computing for autonomous driving: Opportunities and challenges. Proc. IEEE 107, 8 (2019), 1697–1716.Google ScholarGoogle ScholarCross RefCross Ref
  73. Wei Liu, Li Chen, and Wenyi Zhang. 2021. Decentralized Federated Learning: Balancing Communication and Computing Costs. arXiv preprint arXiv:2107.12048(2021).Google ScholarGoogle Scholar
  74. Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen, and Qiang Yang. 2020. A secure federated transfer learning framework. IEEE Intelligent Systems 35, 4 (2020), 70–82.Google ScholarGoogle ScholarCross RefCross Ref
  75. Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and Qiang Yang. 2019. A communication efficient collaborative learning framework for distributed features. arXiv preprint arXiv:1912.11187(2019).Google ScholarGoogle Scholar
  76. Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang. 2019. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Transactions on Industrial Informatics 16, 6 (2019), 4177–4186.Google ScholarGoogle ScholarCross RefCross Ref
  77. Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang. 2020. Federated learning for data privacy preservation in vehicular cyber-physical systems. IEEE Network 34, 3 (2020), 50–56.Google ScholarGoogle ScholarCross RefCross Ref
  78. Siqi Luo, Xu Chen, Qiong Wu, Zhi Zhou, and Shuai Yu. 2020. Hfel: Joint edge association and resource allocation for cost-efficient hierarchical federated edge learning. IEEE Transactions on Wireless Communications 19, 10(2020), 6535–6548.Google ScholarGoogle ScholarCross RefCross Ref
  79. Qianpiao Ma, Yang Xu, Hongli Xu, Zhida Jiang, Liusheng Huang, and He Huang. 2021. FedSA: A semi-asynchronous federated learning mechanism in heterogeneous edge computing. IEEE Journal on Selected Areas in Communications 39, 12(2021), 3654–3672.Google ScholarGoogle ScholarCross RefCross Ref
  80. Umer Majeed and Choong Seon Hong. 2019. FLchain: Federated learning via MEC-enabled blockchain network. In 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 1–4.Google ScholarGoogle ScholarCross RefCross Ref
  81. Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. 2017. A survey on mobile edge computing: The communication perspective. IEEE communications surveys & tutorials 19, 4 (2017), 2322–2358.Google ScholarGoogle Scholar
  82. Othmane Marfoq, Chuan Xu, Giovanni Neglia, and Richard Vidal. 2020. Throughput-optimal topology design for cross-silo federated learning. Advances in Neural Information Processing Systems 33 (2020), 19478–19487.Google ScholarGoogle Scholar
  83. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics. PMLR, 1273–1282.Google ScholarGoogle Scholar
  84. Naram Mhaisen, Alaa Awad, Amr Mohamed, Aiman Erbad, and Mohsen Guizani. 2021. Optimal user-edge assignment in hierarchical federated learning based on statistical properties and network topology constraints. IEEE Transactions on Network Science and Engineering (2021).Google ScholarGoogle Scholar
  85. Jed Mills, Jia Hu, and Geyong Min. 2019. Communication-efficient federated learning for wireless edge intelligence in IoT. IEEE Internet of Things Journal 7, 7 (2019), 5986–5994.Google ScholarGoogle ScholarCross RefCross Ref
  86. David Moher, Alessandro Liberati, Jennifer Tetzlaff, Douglas G Altman, Prisma Group, et al. 2010. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International journal of surgery 8, 5 (2010), 336–341.Google ScholarGoogle Scholar
  87. Alberto Montresor and Márk Jelasity. 2009. PeerSim: A Scalable P2P Simulator. In Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09). Seattle, WA, 99–100.Google ScholarGoogle ScholarCross RefCross Ref
  88. Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha, and Gautam Srivastava. 2021. A survey on security and privacy of federated learning. Future Generation Computer Systems 115 (2021), 619–640.Google ScholarGoogle ScholarCross RefCross Ref
  89. Anh Nguyen, Tuong Do, Minh Tran, Binh X Nguyen, Chien Duong, Tu Phan, Erman Tjiputra, and Quang D Tran. 2021. Deep Federated Learning for Autonomous Driving. arXiv preprint arXiv:2110.05754(2021).Google ScholarGoogle Scholar
  90. Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and H Vincent Poor. 2021. Federated learning for internet of things: A comprehensive survey. IEEE Communications Surveys & Tutorials 23, 3 (2021), 1622–1658.Google ScholarGoogle ScholarCross RefCross Ref
  91. Dinh C Nguyen, Quoc-Viet Pham, Pubudu N Pathirana, Ming Ding, Aruna Seneviratne, Zihuai Lin, Octavia Dobre, and Won-Joo Hwang. 2022. Federated learning for smart healthcare: A survey. ACM Computing Surveys (CSUR) 55, 3 (2022), 1–37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. John Nguyen, Kshitiz Malik, Maziar Sanjabi, and Michael Rabbat. 2022. Where to begin? Exploring the impact of pre-training and initialization in federated learning. arXiv preprint arXiv:2206.15387(2022).Google ScholarGoogle Scholar
  93. Wanli Ni, Yuanwei Liu, Yonina C Eldar, Zhaohui Yang, and Hui Tian. 2022. STAR-RIS integrated nonorthogonal multiple access and over-the-air federated learning: Framework, analysis, and optimization. IEEE internet of things journal 9, 18 (2022), 17136–17156.Google ScholarGoogle Scholar
  94. Huansheng Ning, Yunfei Li, Feifei Shi, and Laurence T Yang. 2020. Heterogeneous edge computing open platforms and tools for internet of things. Future Generation Computer Systems 106 (2020), 67–76.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Róbert Ormándi, István Hegedűs, and Márk Jelasity. 2013. Gossip learning with linear models on fully distributed data. Concurrency and Computation: Practice and Experience 25, 4(2013), 556–571.Google ScholarGoogle ScholarCross RefCross Ref
  96. Jianli Pan and James McElhannon. 2017. Future edge cloud and edge computing for internet of things applications. IEEE Internet of Things Journal 5, 1 (2017), 439–449.Google ScholarGoogle ScholarCross RefCross Ref
  97. Bjarne Pfitzner, Nico Steckhan, and Bert Arnrich. 2021. Federated learning in a medical context: a systematic literature review. ACM Transactions on Internet Technology (TOIT) 21, 2 (2021), 1–31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and Lin Xiao. 2022. Federated learning with partial model personalization. In International Conference on Machine Learning. PMLR, 17716–17758.Google ScholarGoogle Scholar
  99. Pinyarash Pinyoanuntapong, Prabhu Janakaraj, Pu Wang, Minwoo Lee, and Chen Chen. 2020. FedAir: Towards multi-hop federated learning over-the-air. In 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 1–5.Google ScholarGoogle ScholarCross RefCross Ref
  100. Shiva Raj Pokhrel and Jinho Choi. 2020. Federated learning with blockchain for autonomous vehicles: Analysis and design challenges. IEEE Transactions on Communications 68, 8 (2020), 4734–4746.Google ScholarGoogle ScholarCross RefCross Ref
  101. Julien Polge, Jérémy Robert, and Yves Le Traon. 2021. Permissioned blockchain frameworks in the industry: A comparison. Ict Express 7, 2 (2021), 229–233.Google ScholarGoogle ScholarCross RefCross Ref
  102. Tie Qiu, Jiancheng Chi, Xiaobo Zhou, Zhaolong Ning, Mohammed Atiquzzaman, and Dapeng Oliver Wu. 2020. Edge computing in industrial internet of things: Architecture, advances and challenges. IEEE Communications Surveys & Tutorials 22, 4 (2020), 2462–2488.Google ScholarGoogle ScholarCross RefCross Ref
  103. Youyang Qu, Longxiang Gao, Tom H Luan, Yong Xiang, Shui Yu, Bai Li, and Gavin Zheng. 2020. Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE Internet of Things Journal 7, 6 (2020), 5171–5183.Google ScholarGoogle ScholarCross RefCross Ref
  104. Zhaonan Qu, Kaixiang Lin, Zhaojian Li, Jiayu Zhou, and Zhengyuan Zhou. 2020. A Unified Linear Speedup Analysis of Stochastic FedAvg and Nesterov Accelerated FedAvg. arXiv e-prints (2020), arXiv–2007.Google ScholarGoogle Scholar
  105. Rajmohan Rajaraman. 2002. Topology control and routing in ad hoc networks: A survey. ACM SIGACT News 33, 2 (2002), 60–73.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. 2020. Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization. In International Conference on Artificial Intelligence and Statistics. PMLR, 2021–2031.Google ScholarGoogle Scholar
  107. Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. 2020. The future of digital health with federated learning. NPJ digital medicine 3, 1 (2020), 1–7.Google ScholarGoogle Scholar
  108. Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and Christian Wachinger. 2019. Braintorrent: A peer-to-peer environment for decentralized federated learning. arXiv preprint arXiv:1905.06731(2019).Google ScholarGoogle Scholar
  109. Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, and Carlee Joe-Wong. 2021. Towards Flexible Device Participation in Federated Learning. In International Conference on Artificial Intelligence and Statistics. PMLR, 3403–3411.Google ScholarGoogle Scholar
  110. Alessio Sacco, Flavio Esposito, and Guido Marchetto. 2020. A federated learning approach to routing in challenged sdn-enabled edge networks. In 2020 6th IEEE Conference on Network Softwarization (NetSoft). IEEE, 150–154.Google ScholarGoogle ScholarCross RefCross Ref
  111. Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia Smith. 2018. On the convergence of federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 3 (2018), 3.Google ScholarGoogle Scholar
  112. Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (2017), 30–39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Stefano Savazzi, Monica Nicoli, and Vittorio Rampa. 2020. Federated learning with cooperating devices: A consensus approach for massive IoT networks. IEEE Internet of Things Journal 7, 5 (2020), 4641–4654.Google ScholarGoogle ScholarCross RefCross Ref
  114. Muhammad Shayan, Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2020. Biscotti: A blockchain system for private and secure federated learning. IEEE Transactions on Parallel and Distributed Systems 32, 7 (2020), 1513–1525.Google ScholarGoogle ScholarCross RefCross Ref
  115. Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016), 637–646.Google ScholarGoogle Scholar
  116. Weisong Shi and Schahram Dustdar. 2016. The promise of edge computing. Computer 49, 5 (2016), 78–81.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Yi Shi, Yalin E Sagduyu, and Tugba Erpek. 2022. Federated Learning for Distributed Spectrum Sensing in NextG Communication Networks. arXiv preprint arXiv:2204.03027(2022).Google ScholarGoogle Scholar
  118. Yandong Shi, Yong Zhou, and Yuanming Shi. 2021. Over-the-Air Decentralized Federated Learning. arXiv preprint arXiv:2106.08011(2021).Google ScholarGoogle Scholar
  119. Yushan Siriwardhana, Pawani Porambage, Madhusanka Liyanage, and Mika Ylianttila. 2021. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects. IEEE Communications Surveys & Tutorials 23, 2 (2021), 1160–1192.Google ScholarGoogle ScholarCross RefCross Ref
  120. Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. 2017. Don’t decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489(2017).Google ScholarGoogle Scholar
  121. Dimitris Stripelis and José Luis Ambite. 2021. Semi-synchronous federated learning. arXiv preprint arXiv:2102.02849(2021).Google ScholarGoogle Scholar
  122. Haijian Sun, Fuhui Zhou, and Rose Qingyang Hu. 2019. Joint offloading and computation energy efficiency maximization in a mobile edge computing system. IEEE Transactions on Vehicular Technology 68, 3 (2019), 3052–3056.Google ScholarGoogle Scholar
  123. Canh T Dinh, Nguyen Tran, and Josh Nguyen. 2020. Personalized federated learning with moreau envelopes. Advances in Neural Information Processing Systems 33 (2020), 21394–21405.Google ScholarGoogle Scholar
  124. Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2022. Towards personalized federated learning. IEEE Transactions on Neural Networks and Learning Systems (2022).Google ScholarGoogle ScholarCross RefCross Ref
  125. Yangyang Tao, Junxiu Zhou, and Shucheng Yu. 2021. Efficient Parameter Aggregation in Federated Learning with Hybrid Convergecast. In 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 1–6.Google ScholarGoogle Scholar
  126. Luke K Topham, Wasiq Khan, Dhiya Al-Jumeily, Atif Waraich, and Abir J Hussain. 2022. Gait identification using limb joint movement and deep machine learning. IEEE Access 10(2022), 100113–100127.Google ScholarGoogle ScholarCross RefCross Ref
  127. Tuyen X Tran and Dario Pompili. 2018. Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE Transactions on Vehicular Technology 68, 1 (2018), 856–868.Google ScholarGoogle ScholarCross RefCross Ref
  128. Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. 2018. Split learning for health: Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564(2018).Google ScholarGoogle Scholar
  129. Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing 10, 3152676(2017), 10–5555.Google ScholarGoogle ScholarCross RefCross Ref
  130. Aidmar Wainakh, Alejandro Sanchez Guinea, Tim Grube, and Max Mühlhäuser. 2020. Enhancing privacy via hierarchical federated learning. In 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 344–347.Google ScholarGoogle ScholarCross RefCross Ref
  131. Haoxin Wang, Tingting Liu, BaekGyu Kim, Chung-Wei Lin, Shinichi Shiraishi, Jiang Xie, and Zhu Han. 2020. Architectural design alternatives based on cloud/edge/fog computing for connected vehicles. IEEE Communications Surveys & Tutorials 22, 4 (2020), 2349–2377.Google ScholarGoogle ScholarCross RefCross Ref
  132. Su Wang, Mengyuan Lee, Seyyedali Hosseinalipour, Roberto Morabito, Mung Chiang, and Christopher G Brinton. 2021. Device Sampling for Heterogeneous Federated Learning: Theory, Algorithms, and Implementation. arXiv preprint arXiv:2101.00787(2021).Google ScholarGoogle Scholar
  133. Shangguang Wang, Yali Zhao, Jinlinag Xu, Jie Yuan, and Ching-Hsien Hsu. 2019. Edge server placement in mobile edge computing. J. Parallel and Distrib. Comput. 127 (2019), 160–168.Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Tian Wang, Yucheng Lu, Jianhuang Wang, Hong-Ning Dai, Xi Zheng, and Weijia Jia. 2021. EIHDP: Edge-intelligent hierarchical dynamic pricing based on cloud-edge-client collaboration for IoT systems. IEEE Trans. Comput. 70, 8 (2021), 1285–1298.Google ScholarGoogle ScholarCross RefCross Ref
  135. Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen. 2019. In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Network 33, 5 (2019), 156–165.Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Xiaokang Wang, Laurence T Yang, Xia Xie, Jirong Jin, and M Jamal Deen. 2017. A cloud-edge computing framework for cyber-physical-social services. IEEE Communications Magazine 55, 11 (2017), 80–85.Google ScholarGoogle ScholarCross RefCross Ref
  137. Zhao Wang, Yifan Hu, Jun Xiao, and Chao Wu. 2021. Efficient Ring-topology Decentralized Federated Learning with Deep Generative Models for Industrial Artificial Intelligent. arXiv preprint arXiv:2104.08100(2021).Google ScholarGoogle Scholar
  138. Zhiyuan Wang, Hongli Xu, Jianchun Liu, Yang Xu, He Huang, and Yangming Zhao. 2022. Accelerating Federated Learning with Cluster Construction and Hierarchical Aggregation. IEEE Transactions on Mobile Computing(2022).Google ScholarGoogle Scholar
  139. Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai Chen, and Thilina Ranbaduge. 2022. Vertical federated learning: Challenges, methodologies and experiments. arXiv preprint arXiv:2202.04309(2022).Google ScholarGoogle Scholar
  140. Wanli Wen, Zihan Chen, Howard H Yang, Wenchao Xia, and Tony QS Quek. 2022. Joint Scheduling and Resource Allocation for Hierarchical Federated Edge Learning. IEEE Transactions on Wireless Communications (2022).Google ScholarGoogle ScholarCross RefCross Ref
  141. Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated optimization. arXiv preprint arXiv:1903.03934(2019).Google ScholarGoogle Scholar
  142. Hong Xing, Osvaldo Simeone, and Suzhi Bi. 2020. Decentralized federated learning via SGD over wireless D2D networks. In 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 1–5.Google ScholarGoogle ScholarCross RefCross Ref
  143. Xiaolong Xu, Qingxiang Liu, Yun Luo, Kai Peng, Xuyun Zhang, Shunmei Meng, and Lianyong Qi. 2019. A computation offloading method over big data for IoT-enabled cloud-edge computing. Future Generation Computer Systems 95 (2019), 522–533.Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. Guang Yang, Ke Mu, Chunhe Song, Zhijia Yang, and Tierui Gong. 2021. RingFed: Reducing Communication Costs in Federated Learning on Non-IID Data. arXiv preprint arXiv:2107.08873(2021).Google ScholarGoogle Scholar
  145. Kai Yang, Tao Jiang, Yuanming Shi, and Zhi Ding. 2020. Federated learning via over-the-air computation. IEEE Transactions on Wireless Communications 19, 3(2020), 2022–2035.Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST) 10, 2(2019), 1–19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Yunfan Ye, Shen Li, Fang Liu, Yonghao Tang, and Wanting Hu. 2020. EdgeFed: Optimized federated learning based on edge computing. IEEE Access 8(2020), 209191–209198.Google ScholarGoogle ScholarCross RefCross Ref
  148. Michal Yemini, Rajarshi Saha, Emre Ozfatura, Deniz Gündüz, and Andrea J Goldsmith. 2022. Robust Federated Learning with Connectivity Failures: A Semi-Decentralized Framework with Collaborative Relaying. arXiv preprint arXiv:2202.11850(2022).Google ScholarGoogle Scholar
  149. Rong Yu and Peichun Li. 2021. Toward resource-efficient federated learning in mobile edge computing. IEEE Network 35, 1 (2021), 148–155.Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin, and Xinyu Yang. 2017. A survey on the edge computing for the Internet of Things. IEEE access 6(2017), 6900–6919.Google ScholarGoogle Scholar
  151. Jinliang Yuan, Mengwei Xu, Xiao Ma, Ao Zhou, Xuanzhe Liu, and Shangguang Wang. 2020. Hierarchical federated learning through lan-wan orchestration. arXiv preprint arXiv:2010.11612(2020).Google ScholarGoogle Scholar
  152. Shahryar Zehtabi, Seyyedali Hosseinalipour, and Christopher G Brinton. 2022. Decentralized Event-Triggered Federated Learning with Heterogeneous Communication Thresholds. arXiv preprint arXiv:2204.03726(2022).Google ScholarGoogle Scholar
  153. Chong Zhang, Xiao Liu, Xi Zheng, Rui Li, and Huai Liu. 2020. Fenghuolun: A federated learning based edge computing platform for cyber-physical systems. In 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 1–4.Google ScholarGoogle ScholarCross RefCross Ref
  154. Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. 2021. A survey on federated learning. Knowledge-Based Systems 216 (2021), 106775.Google ScholarGoogle ScholarCross RefCross Ref
  155. Jie Zhang, Xiaohua Qi, and Bo Zhao. 2023. Federated generative learning with foundation models. arXiv preprint arXiv:2306.16064(2023).Google ScholarGoogle Scholar
  156. Jing Zhang, Weiwei Xia, Feng Yan, and Lianfeng Shen. 2018. Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing. IEEE Access 6(2018), 19324–19337.Google ScholarGoogle ScholarCross RefCross Ref
  157. Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng, Li Pan, Sabita Maharjan, and Yan Zhang. 2016. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE access 4(2016), 5896–5907.Google ScholarGoogle ScholarCross RefCross Ref
  158. Weishan Zhang, Qinghua Lu, Qiuyu Yu, Zhaotong Li, Yue Liu, Sin Kit Lo, Shiping Chen, Xiwei Xu, and Liming Zhu. 2020. Blockchain-based federated learning for device failure detection in industrial IoT. IEEE Internet of Things Journal 8, 7 (2020), 5926–5937.Google ScholarGoogle ScholarCross RefCross Ref
  159. Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. 2018. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582(2018).Google ScholarGoogle Scholar
  160. Yang Zhao, Jun Zhao, Linshan Jiang, Rui Tan, Dusit Niyato, Zengxiang Li, Lingjuan Lyu, and Yingbo Liu. 2020. Privacy-preserving blockchain-based federated learning for IoT devices. IEEE Internet of Things Journal 8, 3 (2020), 1817–1829.Google ScholarGoogle ScholarCross RefCross Ref
  161. Zhicong Zhong, Yipeng Zhou, Di Wu, Xu Chen, Min Chen, Chao Li, and Quan Z Sheng. 2021. P-FedAvg: parallelizing federated learning with theoretical guarantees. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications. IEEE, 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. Chunyi Zhou, Anmin Fu, Shui Yu, Wei Yang, Huaqun Wang, and Yuqing Zhang. 2020. Privacy-preserving federated learning in fog computing. IEEE Internet of Things Journal 7, 11 (2020), 10782–10793.Google ScholarGoogle ScholarCross RefCross Ref
  163. Xiaokang Zhou, Wei Liang, Jinhua She, Zheng Yan, I Kevin, and Kai Wang. 2021. Two-layer federated learning with heterogeneous model aggregation for 6g supported internet of vehicles. IEEE Transactions on Vehicular Technology 70, 6 (2021), 5308–5317.Google ScholarGoogle ScholarCross RefCross Ref
  164. Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. 2023. XTab: Cross-table Pretraining for Tabular Transformers. arXiv preprint arXiv:2305.06090(2023).Google ScholarGoogle Scholar
  165. Juncen Zhu, Jiannong Cao, Divya Saxena, Shan Jiang, and Houda Ferradi. 2023. Blockchain-empowered federated learning: Challenges, solutions, and future directions. Comput. Surveys 55, 11 (2023), 1–31.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Topology-aware Federated Learning in Edge Computing: A Comprehensive Survey

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Computing Surveys
              ACM Computing Surveys Just Accepted
              ISSN:0360-0300
              EISSN:1557-7341
              Table of Contents

              Copyright © 2024 Copyright held by the owner/author(s).

              Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Online AM: 18 April 2024
              • Accepted: 4 April 2024
              • Revised: 1 April 2024
              • Received: 6 February 2023

              Check for updates

              Qualifiers

              • survey
            • Article Metrics

              • Downloads (Last 12 months)133
              • Downloads (Last 6 weeks)133

              Other Metrics

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader