skip to main content
research-article
Free Access
Just Accepted

Decoding Functional Brain Data for Emotion Recognition: A Machine Learning Approach

Authors Info & Claims
Online AM:18 April 2024Publication History
Skip Abstract Section

Abstract

The identification of emotions is an open research area and has a potential leading role in the improvement of socio-emotional skills such as empathy, sensitivity, and emotion recognition in humans. The current study aimed to use Event Related Potential (ERP) components (N100, N200, P200, P300, early Late Positive Potential (LPP), middle LPP, and late LPP) of EEG data for the classification of emotional states (positive, negative, neutral). EEG data were collected from 62 healthy individuals over 18 electrodes. An emotional paradigm with pictures from the International Affective Picture System (IAPS) was used to record the EEG data. A linear Support Vector Machine (C=0.1) was used to classify emotions, and a forward feature selection approach was used to eliminate irrelevant features. The early LPP component, which was the most discriminative among all ERP components, had the highest classification accuracy (70.16%) for identifying negative and neutral stimuli. The classification of negative versus neutral stimuli had the best accuracy (79.84%) when all ERP components were used as a combined feature set, followed by positive versus negative stimuli (75.00%) and positive versus neutral stimuli (68.55%). Overall, the combined ERP component feature sets outperformed single ERP component feature sets for all stimulus pairings in terms of accuracy. These findings are promising for further research and development of EEG-based emotion recognition systems.

References

  1. Nandini K. Bhandari and Manish Jain. 2020. Emotion Recognition And Classification Using Eeg: A Review. International Journal of Scientific & Technology Research 9, 2 (February 2020), 1827–1836.Google ScholarGoogle Scholar
  2. William James. 2013. What is an Emotion?. Simon and Schuster.Google ScholarGoogle Scholar
  3. Carl Georg Lange.1912. The mechanism of the emotion. (B. Rand, Trans.). In Om sindsbevaegelser: Eine psycho-physiologische studie [On Emotions: A psycho-physiological study]. In B. Rand (Ed.)., The classical psychologists, 672-684. (Original work published 1885; translated 1912).Google ScholarGoogle Scholar
  4. Morteza Zangeneh Soroush, Keivan Maghooli, Seyed Kamaledin Setarehdan, and Ali Motie Nasrabadi. 2017. A Review on EEG Signals Based Emotion Recognition. International Clinical Neuroscience Journal 4, 4 (October 2017), 118–129. DOI:https://doi.org/10.15171/icnj.2017.01Google ScholarGoogle ScholarCross RefCross Ref
  5. Nazmi Sofian Suhaimi, James Mountstephens, and Jason Teo. 2020. EEG-Based Emotion Recognition: A State-of-the-Art Review of Current Trends and Opportunities. Computational Intelligence and Neuroscience 2020, (September 2020), 1–19. DOI:https://doi.org/10.1155/2020/8875426Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Rania Alhalaseh and Suzan Alasasfeh. 2020. Machine-Learning-Based Emotion Recognition System Using EEG Signals. Computers 9, 4 (November 2020), 95. DOI:https://doi.org/10.3390/computers9040095Google ScholarGoogle ScholarCross RefCross Ref
  7. Felipe Zago Canal, Tobias Rossi Müller, Jhennifer Cristine Matias, Gustavo Gino Scotton, Antonio Reis de Sa Junior, Eliane Pozzebon, and Antonio Carlos Sobieranski. 2022. A survey on facial emotion recognition techniques: A state-of-the-art literature review. Information Sciences 582, (January 2022), 593–617. DOI:https://doi.org/10.1016/j.ins.2021.10.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, and Gholamreza Anbarjafari. 2019. Emotion Recognition from Skeletal Movements. Entropy 21, 7 (June 2019), 646. DOI:https://doi.org/10.3390/e21070646Google ScholarGoogle ScholarCross RefCross Ref
  9. Andrius Dzedzickis, Artūras Kaklauskas, and Vytautas Bucinskas. 2020. Human Emotion Recognition: Review of Sensors and Methods. Sensors (Basel, Switzerland) 20, 3 (January 2020), 542. DOI:https://doi.org/10.3390/s20030592Google ScholarGoogle ScholarCross RefCross Ref
  10. Essam H. Houssein, Asmaa Hammad, and Abdelmgeid A. Ali. 2022. Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review. Neural Computing and Applications 34, (May 2022), 12527–12557. DOI:https://doi.org/10.1007/s00521-022-07292-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Haoran Liu, Ying Zhang, Yujun Li, and Xiangyi Kong. 2021. Review on Emotion Recognition Based on Electroencephalography. Frontiers in Computational Neuroscience 15, (October 2021), 758212. DOI:https://doi.org/10.3389/fncom.2021.758212Google ScholarGoogle ScholarCross RefCross Ref
  12. Jonas K. Olofsson, Steven Nordin, Henrique Sequeira, and John Polich. 2008. Affective picture processing: An integrative review of ERP findings. Biological Psychology 77, 3 (March 2008), 247–265. DOI:https://doi.org/10.1016/j.biopsycho.2007.11.006Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Jehna, C. Neuper, A. Ischebeck, M. Loitfelder, S. Ropele, C. Langkammer, F. Ebner, S. Fuchs, R. Schmidt, F. Fazekas, and C. Enzinger. 2011. The functional correlates of face perception and recognition of emotional facial expressions as evidenced by fMRI. Brain Research 1393, (June 2011), 73–83. DOI:https://doi.org/10.1016/j.brainres.2011.04.007Google ScholarGoogle ScholarCross RefCross Ref
  14. Mojtaba Khomami Abadi, Ramanathan Subramanian, Seyed Mostafa Kia, Paolo Avesani, Ioannis Patras, and Nicu Sebe. 2015. DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses. IEEE Transactions on Affective Computing 6, 3 (2015), 209–222. DOI:https://doi.org/10.1109/TAFFC.2015.2392932Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Bahar Güntekin and Erol Başar. 2014. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 58, (May 2014), 33–51. DOI:https://doi.org/10.1016/j.neuropsychologia.2014.03.014Google ScholarGoogle ScholarCross RefCross Ref
  16. Martin Eimer and Amanda Holmes. 2007. Event-related brain potential correlates of emotional face processing. Neuropsychologia 45, 1 (2007), 15–31. DOI:https://doi.org/10.1016/j.neuropsychologia.2006.04.022Google ScholarGoogle ScholarCross RefCross Ref
  17. Tracy A. Dennis and Greg Hajcak. 2009. The late positive potential: a neurophysiological marker for emotion regulation in children. Journal of Child Psychology and Psychiatry 50, 11 (November 2009), 1373–1383. DOI:https://doi.org/10.1111/j.1469-7610.2009.02168.xGoogle ScholarGoogle ScholarCross RefCross Ref
  18. Mizhi Hua, Zhuo Rachel Han, Siyi Chen, Meng Yang, Renlai Zhou, and Sengqi Hu. 2014. Late positive potential (LPP) modulation during affective picture processing in preschoolers. Biological Psychology 101, (September 2014), 77–81. DOI:https://doi.org/10.1016/j.biopsycho.2014.06.006Google ScholarGoogle ScholarCross RefCross Ref
  19. Greg Hajcak, Annmarie MacNamara, and Doreen M. Olvet. 2010. Event-Related Potentials, Emotion, and Emotion Regulation: An Integrative Review. Developmental Neuropsychology 35, 2 (February 2010), 129–155. DOI:https://doi.org/10.1080/87565640903526504Google ScholarGoogle ScholarCross RefCross Ref
  20. Maxime Résibois, Philippe Verduyn, Pauline Delaveau, Jean-Yves Rotgé, Peter Kuppens, Iven Van Mechelen, and Philippe Fossati. 2017. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity. Social cognitive and affective neuroscience 12, 8 (2017), 1261–1271. DOI:https://doi.org/10.1093/scan/nsx051Google ScholarGoogle ScholarCross RefCross Ref
  21. Christos A Frantzidis, Charalampos Bratsas, Christos L Papadelis, Evdokimos Konstantinidis, Costas Pappas, and Panagiotis D Bamidis. 2010. Toward Emotion Aware Computing: An Integrated Approach Using Multichannel Neurophysiological Recordings and Affective Visual Stimuli. IEEE Transactions on Information Technology in Biomedicine 14, 3 (May 2010), 589–597. DOI:https://doi.org/10.1109/titb.2010.2041553Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ahmad Tauseef Sohaib, Shahnawaz Qureshi, Johan Hagelbäck, Olle Hilborn, and Petar Jerčić. 2013. Evaluating Classifiers for Emotion Recognition Using EEG. Foundations of Augmented Cognition (2013), 492–501. DOI:https://doi.org/10.1007/978-3-642-39454-6_53Google ScholarGoogle ScholarCross RefCross Ref
  23. Mostafa Mohammadpour, Seyyed Mohammad Reza Hashemi, and Negin Houshmand. 2017. Classification of EEG-based emotion for BCI applications. 2017 Artificial Intelligence and Robotics (IRANOPEN) (April 2017). DOI:https://doi.org/10.1109/rios.2017.7956455Google ScholarGoogle ScholarCross RefCross Ref
  24. Haiyan Xu and Konstantinos N. Plataniotis. 2012. Affect recognition using EEG signal. 2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP) (September 2012). DOI:https://doi.org/10.1109/mmsp.2012.6343458Google ScholarGoogle ScholarCross RefCross Ref
  25. N. G. Mathieu, S. Bonnet, S. Harquel, E. Gentaz, and A. Campagne. 2013. Single-trial ERP classification of emotional processing. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) 2013, (November 2013), 101-104. DOI:https://doi.org/10.1109/ner.2013.6695881Google ScholarGoogle ScholarCross RefCross Ref
  26. Jingjing Tong, Shuang Liu, Yufeng Ke, Bin Gu, Feng He, Baikun Wan, and Dong Ming. 2017. EEG-based emotion recognition using nonlinear feature. 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST) 2017, (November 2017), 55-59. DOI:https://doi.org/10.1109/icawst.2017.8256518Google ScholarGoogle ScholarCross RefCross Ref
  27. Soraia M. Alarcao and Manuel J. Fonseca. 2019. Emotions Recognition Using EEG Signals: A Survey. IEEE Transactions on Affective Computing 10, 3 (July 2019), 374–393. DOI:https://doi.org/10.1109/taffc.2017.2714671Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jiang Wang and Mei Wang. 2021. Review of the emotional feature extraction and classification using EEG signals. Cognitive Robotics 1, (2021), 29–40. DOI:https://doi.org/10.1016/j.cogr.2021.04.001Google ScholarGoogle ScholarCross RefCross Ref
  29. Md. Mustafizur Rahman, Ajay Krishno Sarkar, Md. Amzad Hossain, Md. Selim Hossain, Md. Rabiul Islam, Md. Biplob Hossain, Julian M.W. Quinn, and Mohammad Ali Moni. 2021. Recognition of human emotions using EEG signals: A review. Computers in Biology and Medicine 136, (September 2021), 104696. DOI:https://doi.org/10.1016/j.compbiomed.2021.104696Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Vempati, Raveendrababu, and Lakhan Dev Sharma. 2023. A Systematic Review on Automated Human Emotion Recognition using Electroencephalogram Signals and Artificial Intelligence. Results in Engineering, 2023, 101027.Google ScholarGoogle Scholar
  31. Moon Inder Singh and Mandeep Singh. 2017. Development of a real time emotion classifier based on evoked EEG. Biocybernetics and Biomedical Engineering 37, 3 (2017), 498–509. DOI:https://doi.org/10.1016/j.bbe.2017.05.004Google ScholarGoogle ScholarCross RefCross Ref
  32. Danny Plass-Oude Bos. 2006. EEG-based emotion recognition. The influence of visual and auditory stimuli, 56,3, 1-17Google ScholarGoogle Scholar
  33. Yi-Hung Liu, Wei-Teng Cheng, Yu-Tsung Hsiao, Chien-Te Wu, and Mu-Der Jeng. 2014. EEG-based emotion recognition based on kernel Fisher’s discriminant analysis and spectral powers. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2014, (October 2014), 2221-2225. DOI:https://doi.org/10.1109/smc.2014.6974254Google ScholarGoogle ScholarCross RefCross Ref
  34. Aayush Bhardwaj, Ankit Gupta, Pallav Jain, Asha Rani, and Jyoti Yadav. 2015. Classification of human emotions from EEG signals using SVM and LDA Classifiers. 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN) 2015, (February 2015), 180-185. DOI:https://doi.org/10.1109/spin.2015.7095376Google ScholarGoogle ScholarCross RefCross Ref
  35. R. E. J. Yohanes, Wee Ser, and Guang-bin Huang. 2012. Discrete Wavelet Transform coefficients for emotion recognition from EEG signals. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012, (August 2012), 2251-2254. DOI:https://doi.org/10.1109/embc.2012.6346410Google ScholarGoogle ScholarCross RefCross Ref
  36. Seyyed Abed Hosseini and Mohammad Bagher Naghibi-Sistani. 2011. Emotion recognition method using entropy analysis of EEG signals. International Journal of Image, Graphics and Signal Processing 3, 5 (August 2011), 30–36. DOI:https://doi.org/10.5815/ijigsp.2011.05.05Google ScholarGoogle ScholarCross RefCross Ref
  37. Pragati Patel, Raghunandan R, and Ramesh Naidu Annavarapu. 2021. EEG-based human emotion recognition using entropy as a feature extraction measure. Brain Informatics 8, 1 (October 2021). DOI:https://doi.org/10.1186/s40708-021-00141-5Google ScholarGoogle ScholarCross RefCross Ref
  38. Yisi Liu and Olga Sourina. 2014. Real-Time Subject-Dependent EEG-Based Emotion Recognition Algorithm. Transactions on Computational Science XXIII (2014), 199–223. DOI:https://doi.org/10.1007/978-3-662-43790-2_11Google ScholarGoogle ScholarCross RefCross Ref
  39. Katerina Giannakaki, Giorgos Giannakakis, Christina Farmaki, and Vangelis Sakkalis. 2017. Emotional State Recognition Using Advanced Machine Learning Techniques on EEG Data. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS) (June 2017). DOI:https://doi.org/10.1109/cbms.2017.156Google ScholarGoogle ScholarCross RefCross Ref
  40. Andrea Apicella, Pasquale Arpaia, Giovanna Mastrati, and Nicola Moccaldi. 2021. EEG-based detection of emotional valence towards a reproducible measurement of emotions. Scientific Reports 11, 1 (November 2021). DOI:https://doi.org/10.1038/s41598-021-00812-7Google ScholarGoogle ScholarCross RefCross Ref
  41. Peter J. Lang, Margaret M. Bradley, and Bruce N. Cuthbert. 2008. International Affective Picture System (IAPS): Instruction manual and affective ratings, Technical Report A-8. Gainesville: The Center for Research in Psychophysiology, University of Florida.Google ScholarGoogle Scholar
  42. Bahar Güntekin and Elif Tülay. 2014. Event related beta and gamma oscillatory responses during perception of affective pictures. Brain Research 1577, (August 2014), 45–56. DOI:https://doi.org/10.1016/j.brainres.2014.06.029Google ScholarGoogle ScholarCross RefCross Ref
  43. Sebastiaan Mathôt, Daniel Schreij, and Jan Theeuwes. 2011. OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods 44, 2 (November 2011), 314–324. DOI:https://doi.org/10.3758/s13428-011-0168-7Google ScholarGoogle ScholarCross RefCross Ref
  44. Margaret M. Bradley and Peter J. Lang. 1994. Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry 25, 1 (March 1994), 49–59. DOI:https://doi.org/10.1016/0005-7916(94)90063-9Google ScholarGoogle ScholarCross RefCross Ref
  45. Katie E. Garrison, Adrienne L. Crowell, Anna J. Finley, and Brandon J. Schmeichel. 2017. Effects of prior mental effort on picture processing: An ERP investigation. Psychophysiology 54, 11 (July 2017), 1714–1725. DOI:https://doi.org/10.1111/psyp.12914Google ScholarGoogle ScholarCross RefCross Ref
  46. Xinmei Deng, Biao Sang, Yixuan Ku, and Liyang Sai. 2019. Age-Related Differences in the Late Positive Potential during Emotion Regulation between Adolescents and Adults. Scientific Reports 9, 1 (April 2019). DOI:https://doi.org/10.1038/s41598-019-42139-4Google ScholarGoogle ScholarCross RefCross Ref
  47. P. Pudil, J. Novovičová, and J. Kittler. 1994. Floating search methods in feature selection. Pattern Recognition Letters 15, 11 (November 1994), 1119–1125. DOI:https://doi.org/10.1016/0167-8655(94)90127-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Stephen B. R. E. Brown, Henk van Steenbergen, Guido P. H. Band, Mischa de Rover, and Sander Nieuwenhuis. 2012. Functional significance of the emotion-related late positive potential. Frontiers in Human Neuroscience 6, (2012),33. DOI:https://doi.org/10.3389/fnhum.2012.00033Google ScholarGoogle ScholarCross RefCross Ref
  49. Raja Majid Mehmood and Hyo Jong Lee. 2016. A novel feature extraction method based on late positive potential for emotion recognition in human brain signal patterns. Computers & Electrical Engineering 53, (July 2016), 444–457. DOI:https://doi.org/10.1016/j.compeleceng.2016.04.009Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Hans Revers, Katrijn Van Deun, Wim Strijbosch, Jean Vroomen, and Marcel Bastiaansen. 2022. Decoding the neural responses to experiencing disgust and sadness. Brain Research 1793, (October 2022), 148034. DOI:https://doi.org/10.1016/j.brainres.2022.148034Google ScholarGoogle ScholarCross RefCross Ref
  51. Moon Inder Singh and Mandeep Singh. 2021. Emotion Recognition: An Evaluation of ERP Features Acquired from Frontal EEG Electrodes. Applied Sciences 11, 9 (April 2021), 4131. DOI:https://doi.org/10.3390/app11094131Google ScholarGoogle ScholarCross RefCross Ref
  52. Moon Inder Singh and Mandeep Singh. 2020. Development of emotion classifier based on absolute and differential attributes of averaged signals of visually stimulated event related potentials. Transactions of the Institute of Measurement and Control 42, 11 (March 2020), 2057–2067. DOI:https://doi.org/10.1177/0142331220904889Google ScholarGoogle ScholarCross RefCross Ref
  53. Christos A. Frantzidis, Chrysa D. Lithari, Ana B. Vivas, Christos L. Papadelis, Costas Pappas, and Panagiotis D. Bamidis. 2008. Towards emotion aware computing: A study of arousal modulation with multichannel event-related potentials, delta oscillatory activity and skin conductivity responses. 2008 8th IEEE International Conference on BioInformatics and BioEngineering (October 2008). DOI:https://doi.org/10.1109/bibe.2008.4696823Google ScholarGoogle ScholarCross RefCross Ref
  54. Mandeep Singh, Mooninder Singh, and Nikhil Singhal. 2013. Emotion Recognition along Valence Axis Using Naïve Bayes Classifier. International Journal of Information Technology & Knowledge Management 7, (2013), 51–55.Google ScholarGoogle Scholar
  55. Mandeep Singh, Mooninder Singh, and Ankita Sandel. 2014. Emotion Classification along Valence Axis Using Averaged ERP Signals. International Journal of Information Technology & Knowledge Management 7, (2014), 153–161.Google ScholarGoogle Scholar
  56. Money Goyal, Mooninder Singh, and Mandeep Singh. 2015. Classification of emotions based on ERP feature extraction. 2015 1st International Conference on Next Generation Computing Technologies (NGCT) 2015, (September 2015), 660 -662. DOI:https://doi.org/10.1109/ngct.2015.7375203Google ScholarGoogle ScholarCross RefCross Ref
  57. Greg Hajcak, Anna Weinberg, Annmarie MacNamara, and Dan Foti. 2011. ERPs and the Study of Emotion. Oxford University Press. In EJ Kappenman, SJ Luck (Editors). The Oxford Handbook of Event-Related Potential Components: Oxford University Press, 2011. pp.516-554. DOI:https://doi.org/10.1093/oxfordhb/9780195374148.013.0222Google ScholarGoogle ScholarCross RefCross Ref
  58. Jeff P Hamm, Blake W Johnson, and Ian J Kirk. 2002. Comparison of the N300 and N400 ERPs to picture stimuli in congruent and incongruent contexts. Clinical Neurophysiology 113, 8 (August 2002), 1339–1350. DOI:https://doi.org/10.1016/s1388-2457(02)00161-xGoogle ScholarGoogle ScholarCross RefCross Ref
  59. Rui Ding, Ping Li, Wei Wang, and Wenbo Luo. 2017. Emotion Processing by ERP Combined with Development and Plasticity. Neural Plasticity 2017, (2017), 1–15. DOI:https://doi.org/10.1155/2017/5282670Google ScholarGoogle ScholarCross RefCross Ref
  60. Bahar Güntekin, Banu Femir, Bilge Turp Gölbaşı, Elif Tülay, and Erol Başar. 2017. Affective pictures processing is reflected by an increased long-distance EEG connectivity. Cognitive Neurodynamics 11, 4 (April 2017), 355–367. DOI:https://doi.org/10.1007/s11571-017-9439-zGoogle ScholarGoogle ScholarCross RefCross Ref
  61. Jianhai Zhang, Hongyan Xu, Li Zhu, Wanzeng Kong, and Zheng Ma. 2019. Gender recognition in emotion perception using EEG features. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2019, (November 2019), 2883-2887. DOI:https://doi.org/10.1109/bibm47256.2019.8983332Google ScholarGoogle ScholarCross RefCross Ref
  62. Yasser F. Alharbi and Yousef A. Alotaibi. 2021. The Correlate of Emotion and Gender Classification Using EEG Signals. 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP) 2021, (October 2021), 790-794. DOI:https://doi.org/10.1109/icsip52628.2021.9688884Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Decoding Functional Brain Data for Emotion Recognition: A Machine Learning Approach

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Applied Perception
          ACM Transactions on Applied Perception Just Accepted
          ISSN:1544-3558
          EISSN:1544-3965
          Table of Contents

          Copyright © 2024 Copyright held by the owner/author(s).

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Online AM: 18 April 2024
          • Accepted: 31 March 2024
          • Revised: 6 March 2024
          • Received: 13 April 2023
          Published in tap Just Accepted

          Check for updates

          Qualifiers

          • research-article
        • Article Metrics

          • Downloads (Last 12 months)24
          • Downloads (Last 6 weeks)24

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader