Skip to main content
Log in

Effect of porosity on free vibration and buckling of functionally graded porous beams with non-uniform cross-section

孔隙度对具有不均匀横截面的功能分级多孔梁的自由振动和屈曲行为的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The purpose of this work is to investigate the effect of porosity on free vibration and buckling behaviours of non-uniform cross-section functionally graded porous beams. The material properties are considered varied along the thickness direction while the cross-section is non-uniform along the length of the beam. Three different patterns including symmetric, non-symmetric and uniform have been considered as the porosity distribution. The classical beam theory and Hamilton’s principle are used to derive the governing equations of the problem and the derived formulations are solved using differential quadrature method. The obtained results were validated via both well-known and analytical reported solutions. The optimal discretization setting was determined via mesh independency study. Detailed parametric analyses are presented to get an insight into the effects of different mechanical parameters including porosity coefficient, slenderness ratio and varying cross-section on the fundamental frequency and critical buckling load. The results show that an increase in material porosity leads to a significant reduction in beam buckling capacity. However, the free vibration behaviour of beams completely depends on their porosity pattern. In addition, the symmetric distribution pattern has the best performance in the terms of beam buckling capacity and fundamental frequency.

摘要

本文旨在研究孔隙度对具有不均匀横截面的功能分级多孔梁的自由振动和屈曲行为的影响。一 般认为材料的性能沿厚度方向变化, 而梁的横截面沿其长度方向分布不均匀。三种不同的孔隙度分布 包括对称分布、非对称分布和均匀分布。利用经典的梁理论和Hamilton 原理推导出了问题的控制方 程, 并用微分求积法推导出公式。通过已知方法和分析解法对所得结果进行了验证。通过网格独立性 研究, 确定了最优离散化设置。利用详细的参数化分析研究了不同力学参数, 包括孔隙率系数、长径 比和变化截面对基频和临界屈曲载荷的影响。结果表明, 材料孔隙率的增加会导致梁的屈曲能力显著 降低。然而, 梁的自由振动行为完全取决于其孔隙度模式。此外, 孔隙呈对称分布的梁其屈曲能力和 基频性能最好。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. KOIZUMI M. FGM activities in Japan [J]. Composites Part B: Engineering, 1997, 28(1–2): 1–4. DOI: https://doi.org/10.1016/s1359-8368(96)00016-9.

    Article  Google Scholar 

  2. HABOUSSI M, SANKAR A, GANAPATHI M. Nonlinear axisymmetric dynamic buckling of functionally graded graphene reinforced porous nanocomposite spherical caps [J]. Mechanics of Advanced Materials and Structures, 2021, 28(2): 127–140. DOI: https://doi.org/10.1080/15376494.2018.1549296.

    Article  Google Scholar 

  3. FAHSI B, BOUIADJRA R B, MAHMOUDI A, et al. Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined quasi-3D theory [J]. Mechanics of Composite Materials, 2019, 55(2): 219–230. DOI: https://doi.org/10.1007/s11029-019-09805-0.

    Article  Google Scholar 

  4. PRADHAN K K, CHAKRAVERTY S. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh - Ritz method [J]. Composites Part B: Engineering, 2013, 51: 175–184. DOI: https://doi.org/10.1016/j.compositesb.2013.02.027.

    Article  Google Scholar 

  5. BENYAMINA A B, BOUDERBA B, SAOULA A. Bending response of composite material plates with specific properties, case of a typical FGM “ceramic/metal” in thermal environments [J]. Periodica Polytechnica Civil Engineering, 2018. DOI: https://doi.org/10.3311/ppci.11891.

  6. EBRAHIMI F, MOKHTARI M. Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37(4): 1435–1444. DOI: https://doi.org/10.1007/s40430-014-0255-7.

    Article  Google Scholar 

  7. WANG Di, DENG Guo-wei, YANG Yong-qiang, et al. Interface microstructure and mechanical properties of selective laser melted multilayer functionally graded materials [J]. Journal of Central South University, 2021, 28(4): 1155–1169. DOI: https://doi.org/10.1007/s11771-021-4687-9.

    Article  Google Scholar 

  8. CHEN D, YANG J, KITIPORNCHAI S. Elastic buckling and static bending of shear deformable functionally graded porous beam [J]. Composite Structures, 2015, 133: 54–61. DOI: https://doi.org/10.1016/j.compstruct.2015.07.052.

    Article  Google Scholar 

  9. ATMANE H A, TOUNSI A, BERNARD F. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations [J]. International Journal of Mechanics and Materials in Design, 2017, 13(1): 71–84. DOI: https://doi.org/10.1007/s10999-015-9318-x.

    Article  Google Scholar 

  10. SHAFIEI N, KAZEMI M. Nonlinear buckling of functionally graded nano-/micro-scaled porous beams [J]. Composite Structures, 2017, 178: 483–492. DOI: https://doi.org/10.1016/j.compstruct.2017.07.045.

    Article  Google Scholar 

  11. YANG Tian-zhi, TANG Ye, LI Qian, et al. Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams [J]. Composite Structures, 2018, 204: 313–319. DOI: https://doi.org/10.1016/j.compstruct.2018.07.045.

    Article  Google Scholar 

  12. ARSHID E, KHORASANI M, SOLEIMANI-JAVID Z, et al. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory [J]. Engineering with Computers, 2022, 38(5): 4051–4072. DOI: https://doi.org/10.1007/s00366-021-01382-y.

    Article  Google Scholar 

  13. AL-OSTA MA, SAIDI H, TOUNSI A, et al. Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model [J]. Smart Structures and Systems, 2021, 28(4): 499–513. DOI: https://doi.org/10.12989/sss..28.4.499.

    Google Scholar 

  14. KUMAR Y, GUPTA A, TOUNSI A. Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model [J]. Advances in Nano Research, 2021, 11: 001–017. DOI: https://doi.org/10.12989/anr.2021.11.1.001.

    Google Scholar 

  15. van VINH P, van CHINH N, TOUNSI A. Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM [J]. European Journal of Mechanics-A/Solids, 2022, 96: 104743. DOI: https://doi.org/10.1016/j.euromechsol.2022.104743.

    Article  MathSciNet  Google Scholar 

  16. van VINH P, TOUNSI A, BELARBI M O. On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters [J]. Engineering With Computers, 2023, 39(1): 835–855. DOI: https://doi.org/10.1007/s00366-022-01687-6.

    Article  Google Scholar 

  17. SINIR S, ÇEVIK M, SINIR B G. Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section [J]. Composites Part B: Engineering, 2018, 148: 123–131. DOI: https://doi.org/10.1016/j.compositesb.2018.04.061.

    Article  Google Scholar 

  18. LI Zhi-yuan, XU Ye-peng, HUANG Dan. Analytical solution for vibration of functionally graded beams with variable cross-sections resting on Pasternak elastic foundations [J]. International Journal of Mechanical Sciences, 2021, 191: 106084. DOI: https://doi.org/10.1016/j.ijmecsci.2020.106084.

    Article  Google Scholar 

  19. T BEKKAYE, B TAHSI, A A BOUSAHLA, et al. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory comput [J]. Computers and Concrete. 2020, 26: 439–450. DOI: https://doi.org/10.12989/cac.2020.26.5.439.

    Google Scholar 

  20. GUELLIL M, SAIDI H, BOURADA F, et al. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation [J]. Steel and Composite, 2021, 38(1): 1–15. DOI: https://doi.org/10.12989/scs.

    Google Scholar 

  21. A Z, BOUSAHLA A A, BOURADA F, et al. Bending analysis of functionally graded porous plates via a refined shear deformation theory [J]. 2020, 26(1): 63–74. DOI: https://doi.org/10.12989/CAC.2020.26.1.063.

  22. PHAM Q H, THANH TRAN T, van ke TRAN, et al. Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element [J]. Alexandria Engineering Journal, 2022, 61(3): 1788–1802. DOI: https://doi.org/10.1016/j.aej.2021.06.082.

    Article  Google Scholar 

  23. WANG Peng-wen, HUO Jiao-fei, DEHINI R, et al. Buckling of functionally graded nonuniform and imperfect nanotube using higher order theory [J]. Waves in Random and Complex Media, 2021: 1–24. DOI: https://doi.org/10.1080/17455030.2021.1892864.

  24. JAMSHIDI M, ARGHAVANI J. Optimal design of two-dimensional porosity distribution in shear deformable functionally graded porous beams for stability analysis [J]. Thin-Walled Structures, 2017, 120: 81–90. DOI: https://doi.org/10.1016/j.tws.2017.08.027.

    Article  Google Scholar 

  25. TANG Hai-shan, LI Li, HU Yu-jin. Buckling analysis of two-directionally porous beam [J]. Aerospace Science and Technology, 2018, 78: 471–479. DOI: https://doi.org/10.1016/j.ast.2018.04.045.

    Article  Google Scholar 

  26. KADDARI M, KACI A, BOUSAHLA A A, et al. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis [J]. Computers and Concrete, 2020, 25(1): 37–57. DOI: https://doi.org/10.12989/cac.2020.25.1.037.

    Google Scholar 

  27. BELLIFA H, SELIM M M, CHIKH A, et al. Influence of porosity on thermal buckling behavior of functionally graded beams [J]. Smart Structures and Systems, 2021, 27(4): 719–728. DOI: https://doi.org/10.12989/sss.2021.27.4.719.

    Google Scholar 

  28. TAHIR S I, CHIKH A, TOUNSI A, et al. Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment [J]. Composite Structures, 2021, 269: 114030. DOI: https://doi.org/10.1016/j.compstruct.2021.114030.

    Article  Google Scholar 

  29. LIU Guo-liang, WU Sheng-bin, SHAHSAVARI D, et al. Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation [J]. European Journal of Mechanics-A, 2022, 95: 104649. DOI: https://doi.org/10.1016/j.euromechsol.2022.104649.

    Article  MathSciNet  Google Scholar 

  30. BOT I K, BOUSAHLA A A, ZEMRI A, et al. Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment [J]. Steel and Composite Structures, 2022, 43: 821–837. DOI: https://doi.org/10.12989/scs.2022.43.6.821.

    Google Scholar 

  31. THANH C L, NGUYEN K D, HOANG L M, et al. Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory [J]. Advances in Nano Research, 2022, 12(5): 441–455. DOI: https://doi.org/10.12989/ANR.2022.12.5.441.

    Google Scholar 

  32. WATTANASAKULPONG N, UNGBHAKORN V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities [J]. Aerospace Science and Technology, 2014, 32(1): 111–120. DOI: https://doi.org/10.1016/j.ast.2013.12.002.

    Article  Google Scholar 

  33. AKBAÇ Ç D. Forced vibration analysis of functionally graded porous deep beams [J]. Composite Structures, 2018, 186: 293–302. DOI: https://doi.org/10.1016/j.compstruct.2017.12.013.

    Article  Google Scholar 

  34. CHEN Da, KITIPORNCHAI S, YANG Jie. Dynamic response and energy absorption of functionally graded porous structures [J]. Materials & Design, 2018, 140: 473–487. DOI: https://doi.org/10.1016/j.matdes.2017.12.019.

    Article  Google Scholar 

  35. FAZZOLARI F A. Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations [J]. Composites Part B: Engineering, 2018, 136: 254–271. DOI: https://doi.org/10.1016/j.compositesb.2017.10.022.

    Article  Google Scholar 

  36. BERT C W, MALIK M. Differential quadrature method in computational mechanics: A review [J]. Applied Mechanics Reviews, 1996, 49(1): 1–28. DOI: https://doi.org/10.1115/1.3101882.

    Article  Google Scholar 

  37. AL-FURJAN M S H, HATAMI A, HABIBI M, et al. On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method [J]. Composite Structures, 2021, 257: 113150. DOI: https://doi.org/10.1016/j.compstruct.2020.113150.

    Article  Google Scholar 

  38. SHARIATI A, HABIBI M, TOUNSI A, et al. Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties [J]. Engineering with Computers, 2021, 37(4): 3629–3648. DOI: https://doi.org/10.1007/s00366-020-01024-9.

    Article  Google Scholar 

  39. KONG Fan-lei, DONG Feng-hui, DUAN Mao-jun, et al. On the vibrations of the Electrorheological sandwich disk with composite face sheets considering pre and post-yield regions [J]. Thin-Walled Structures, 2022, 179: 109631. DOI: https://doi.org/10.1016/j.tws.2022.109631.

    Article  Google Scholar 

  40. TANG Ye, LI Cheng-long, YANG Tian-zhi. Application of the generalized differential quadrature method to study vibration and dynamic stability of tri-directional functionally graded beam under magneto-electro-elastic fields [J]. Engineering Analysis with Boundary Elements, 2023, 146: 808–823. DOI: https://doi.org/10.1016/j.enganabound.2022.11.016.

    Article  Google Scholar 

  41. TANG Yuan, QING Hai. Size-dependent nonlinear post-buckling analysis of functionally graded porous Timoshenko microbeam with nonlocal integral models [J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 116: 106808. DOI: https://doi.org/10.1016/j.cnsns.2022.106808.

    Article  MathSciNet  Google Scholar 

  42. AL-FURJAN M S H, HABIBI M, NI Jing, et al. Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems [J]. Engineering With Computers, 2022, 38(5): 3725–3741. DOI: https://doi.org/10.1007/s00366-020-01200-x.

    Article  Google Scholar 

  43. AL-FURJAN M S H, HABIBI M, GHABUSSI A, et al. Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory [J]. Engineering Structures, 2021, 228: 111496. DOI: https://doi.org/10.1016/j.engstruct.2020.111496.

    Article  Google Scholar 

  44. AL-FURJAN M S H, HABIBI M, RAHIMI A, et al. Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM [J]. Engineering With Computers, 2022, 38(1): 219–242. DOI: https://doi.org/10.1007/s00366-020-01144-2.

    Article  Google Scholar 

  45. ZHANG Nan, ZHAO Xie, ZHENG Shi-jie, et al. Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams [J]. Smart Materials and Structures, 2020, 29(4): 045025. DOI: 10.1088/1361–665x/ab73e4.

    Article  Google Scholar 

  46. KARAMI B, JANGHORBAN M, RABCZUK T. Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory [J]. Composites Part B: Engineering, 2020, 182: 107622. DOI: https://doi.org/10.1016/j.compositesb.2019.107622.

    Article  Google Scholar 

  47. SHAFIEI N, MOUSAVI A, GHADIRI M. On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams [J]. International Journal of Engineering Science, 2016, 106: 42–56. DOI: https://doi.org/10.1016/j.ijengsci.2016.05.007.

    Article  Google Scholar 

  48. YANG Tian-zhi, TANG Ye, LI Qian, et al. Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams [J]. Composite Structures, 2018, 204: 313–319. DOI: https://doi.org/10.1016/j.compstruct.2018.07.045.

    Article  Google Scholar 

  49. SHAFIEI N, MIRJAVADI S S, MOHASELAFSHARI B, et al. Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 322: 615–632. DOI: https://doi.org/10.1016/j.cma.2017.05.007.

    Article  MathSciNet  Google Scholar 

  50. RAHMANI A, FAROUGHI S, FRISWELL M I. The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory [J]. Mechanical Systems and Signal Processing, 2020, 144: 106854. DOI: https://doi.org/10.1016/j.ymssp.2020.106854.

    Article  Google Scholar 

  51. YAS M H, RAHIMI S. Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method [J]. Aerospace Science and Technology, 2020, 107: 106261. DOI: https://doi.org/10.1016/j.ast.2020.106261.

    Article  Google Scholar 

  52. HUANG Xiao-ping, HAO Hua-dong, OSLUB K, et al. Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem [J]. Engineering With Computers, 2022, 38(5): 4163–4179. DOI: https://doi.org/10.1007/s00366-021-01399-3.

    Article  Google Scholar 

  53. KHAKPOUR M, BAZARGAN-LARI Y, ZAHEDINEJAD P, et al. Vibrations evaluation of functionally graded porous beams in thermal surroundings by generalized differential quadrature method [J]. Shock and Vibration, 2022, 2022: 1–15. DOI: https://doi.org/10.1155/2022/8516971.

    Article  Google Scholar 

  54. CHEN Da, KITIPORNCHAI S, YANG Jie. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core [J]. Thin-Walled Structures, 2016, 107: 39–48. DOI: https://doi.org/10.1016/j.tws.2016.05.025.

    Article  Google Scholar 

  55. CHEN Da, YANG Jie, KITIPORNCHAI S. Free and forced vibrations of shear deformable functionally graded porous beams [J]. International Journal of Mechanical Sciences, 2016, 108–109: 14–22. DOI: https://doi.org/10.1016/j.ijmecsci.2016.01.025.

    Article  Google Scholar 

  56. KITIPORNCHAI S, CHEN Da, YANG Jie. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets [J]. Materials & Design, 2017, 116: 656–665. DOI: https://doi.org/10.1016/j.matdes.2016.12.061.

    Article  Google Scholar 

  57. CALIM F F. Transient analysis of axially functionally graded Timoshenko beams with variable cross-section [J]. Composites Part B: Engineering, 2016, 98: 472–483. DOI: https://doi.org/10.1016/j.compositesb.2016.05.040.

    Article  Google Scholar 

  58. JAMSHIDI M, ARGHAVANI J, MABOUDI G. Post-buckling optimization of two-dimensional functionally graded porous beams [J]. International Journal of Mechanics and Materials in Design, 2019, 15(4): 801–815. DOI: https://doi.org/10.1007/s10999-019-09443-3.

    Article  Google Scholar 

  59. LIU Yi-jie, SU Sheng-kai, HUANG Huai-wei, et al. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane [J]. Composites Part B: Engineering, 2019, 168: 236–242. DOI: https://doi.org/10.1016/j.compositesb.2018.12.063.

    Article  Google Scholar 

  60. WATTANASAKULPONG N, GANGADHARA PRUSTY B, KELLY D W, et al. Free vibration analysis of layered functionally graded beams with experimental validation [J]. Materials & Design, 2012, 36: 182–190. DOI: https://doi.org/10.1016/j.matdes.2011.10.049.

    Article  Google Scholar 

  61. RICHARD B, GEORGE A. Partial differential equations: New methods for their treatment and solution [M]. Springer, 1985. DOI: https://doi.org/10.1007/978-94-009-5209-6.

  62. ZHI Zong, YING Yan-zhang. Advanced Differential Quadrature Methods [M]. New York, 2009. DOI: https://doi.org/10.1201/9781420082494.

  63. BERT C. Differential quadrature and its application in engineering, by Chang Shu, springer, london, 2000 [J]. International Journal of Robust and Nonlinear Control, 2001, 11: 1398–1399. DOI: https://doi.org/10.1002/RNC.611.

    Article  Google Scholar 

  64. YOO C H, LEE S C. Buckling of Columns [M]. Boston: Butterworth-Heinemann, 2011.

    Book  Google Scholar 

  65. RAO S S. Mechanical vibrations [M]. Upper Saddle River, USA: Prentice Hall, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zeinab BAGHERI conducted the literature review, generated data, developed the codes, illustrated the results, and wrote the first draft of the manuscript. Alireza FIOUZ provided the concept and edited the draft of the manuscript. Mahmood SERAJI edited the draft of the manuscript.

Corresponding author

Correspondence to Alireza Fiouz.

Ethics declarations

Zeinab BAGHERI, Alireza FIOUZ and Mahmood SERAJI declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, Z., Fiouz, A. & Seraji, M. Effect of porosity on free vibration and buckling of functionally graded porous beams with non-uniform cross-section. J. Cent. South Univ. 31, 841–857 (2024). https://doi.org/10.1007/s11771-023-5302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5302-z

Key words

关键词

Navigation