Skip to main content
Log in

Aluminum composite powder as an additive in epoxy coatings for enhancement of corrosion protection of carbon steel

环氧树脂涂层中添加含铝复合粉增强碳钢基材的防腐性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopy (EIS) and potentiometric polarization (Tafel) tests were utilized to investigate the corrosion protection efficiency of epoxy (EP) composite coatings reinforced with aluminum powder additives deposited on carbon steel substrate. Different aluminum powders including pure aluminum (Al) and aluminum composites powders containing alumina (Al2O3) and carbon nanotubes (CNTs) were used as an additive filler. Various aluminum composite powders containing 2 wt.% of each CNTs and Al2O3 nanoparticle were synthesized using ball milling and then added into EP coating at concentration of 1 wt.%. It was found that the incorporation of formulated additive fillers improves the corrosion resistance of neat EP coating owing to enhanced barrier properties of EP composite coatings. It was also found that the barrier property of Al/CNT/Al2O3 additive is more significant than other additives owing to reduced particle size and certain shapes of particles as it further reduces the transport paths for penetration of corrosive environment through the coating and greatly prevents possible reactions at metal substrate/coating interface. Moreover, EP-Al/CNT/Al2O3 maintained one-time constant characteristic and showed the highest impedence and stability over the whole exposure time. In addition, the presence of these additives strengthens the coating, leading to further improvement of barrier property of the coating.

摘要

采用电化学阻抗谱(EIS)和电位极化(Tafel)试验, 研究了在环氧树脂涂层中添加含铝粉末以增强 碳钢基材的防腐性, 含铝粉末包括纯铝、Al/CNT、Al/Al2O3、Al/CNT/Al2O3。用球磨法合成含2 wt.% 碳纳米管、2 wt.%氧化铝纳米颗粒的复合粉末, 然后以1 wt.%的浓度加入到环氧树脂涂层中。结果表 明, 由于环氧树脂复合涂层的防护性能增强, 从而提高了其耐腐蚀性。研究还发现, Al/CNT/Al2O3复 合添加剂的保护性能比其他添加剂更显著, 因为其颗粒尺寸的减小和具有某些形状的颗粒, 进一步减 少了腐蚀环境通过涂层渗透的路径, 避免了金属基底/涂层界面可能发生的反应。EP-Al/CNT/Al2O3保 持了一次时间常数特性, 并在整个暴露时间内表现出最高的阻抗和最强的稳定性。这些添加剂的存在 增强了涂层, 从而改善了涂层的屏障性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. MADHUSUDHANA A M, MOHANA K N S, HEGDE M B, et al. Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: An efficient anticorrosion coating on mild steel in saline medium [J]. Advanced Composites and Hybrid Materials, 2020, 3(2): 141–155. DOI: https://doi.org/10.1007/s42114-020-00142-8.

    Article  Google Scholar 

  2. ZHU Qing-song, HUANG Yu-xiang, LI Yi-long, et al. Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals [J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 780–792. DOI: https://doi.org/10.1007/s42114-021-00265-6.

    Article  Google Scholar 

  3. ZHANG Meng, CHEN Ping, LI Jian-chao, et al. Water-repellent and corrosion resistance properties of epoxy-resin-based slippery liquid-infused porous surface [J]. Progress in Organic Coatings, 2022, 172: 107152. DOI: https://doi.org/10.1016/j.porgcoat.2022.107152.

    Article  Google Scholar 

  4. MIRZAEE M, RASHIDI A, ZOLRIASATEIN A, et al. Corrosion properties of organic polymer coating reinforced two-dimensional nitride nanostructures: A comprehensive review [J]. Journal of Polymer Research, 2021, 28(2): 62. DOI: https://doi.org/10.1007/s10965-021-02434-z.

    Article  Google Scholar 

  5. ZHANG Meng, ZHANG Yu, CHEN Yu-cong, et al. Dualinhibitor composite BTA/PPy/MIL-88(Fe) for active anticorrosion of epoxy resin coatings [J]. Journal of Industrial and Engineering Chemistry, 2023, 119: 660–673. DOI: https://doi.org/10.1016/j.jiec.2022.12.012.

    Article  Google Scholar 

  6. CHOPRA I, OLA S K, PRIYANKA, et al. Recent advances in epoxy coatings for corrosion protection of steel: Experimental and modelling approach—A review [J]. Materials Today: Proceedings, 2022, 62: 1658–1663. DOI: https://doi.org/10.1016/j.matpr.2022.04.659.

    Google Scholar 

  7. BOOMADEVI JANAKI G, XAVIER J R. Evaluation of mechanical properties and corrosion protection performance of surface modified nano-alumina encapsulated epoxy coated mild steel [J]. Journal of Bio- and Tribo-Corrosion, 2019, 6(1): 20. DOI: https://doi.org/10.1007/s40735-019-0316-7.

    Article  Google Scholar 

  8. LEI Yang, ZHANG Xin-hai, LIU Qiang, et al. Skin-mimetic assembly strategy for fabricating a transparent and highly anti-corrosive FSO-GO/epoxy nanocomposite coating [J]. Progress in Organic Coatings, 2022, 173: 107184. DOI: https://doi.org/10.1016/j.porgcoat.2022.107184.

    Article  Google Scholar 

  9. OLIVEIRA J D, ROCHA R C, de SOUSA GALDINO A G. Effect of Al2O3 particles on the adhesion, wear, and corrosion performance of epoxy coatings for protection of umbilical cables accessories for subsea oil and gas production systems [J]. Journal of Materials Research and Technology, 2019, 8(2): 1729–1736. DOI: https://doi.org/10.1016/j.jmrt.2018.10.016.

    Article  Google Scholar 

  10. SHI Hong-wei, LIU Fu-chun, YANG Li-hong, et al. Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2 [J]. Progress in Organic Coatings, 2008, 62(4): 359–368. DOI: https://doi.org/10.1016/j.porgcoat.2007.11.003.

    Article  Google Scholar 

  11. SHI Xian-ming, NGUYEN T A, SUO Zhi-yong, et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating [J]. Surface and Coatings Technology, 2009, 204(3): 237–245. DOI: https://doi.org/10.1016/j.surfcoat.2009.06.048.

    Article  Google Scholar 

  12. VU C M, BACH Q V. Oxidized multiwall carbon nanotubes filled epoxy-based coating: Fabrication, anticorrosive, and mechanical characteristics [J]. Polymer Bulletin, 2021, 78(5): 2329–2339. DOI: https://doi.org/10.1007/s00289-020-03218-z.

    Article  MathSciNet  Google Scholar 

  13. JEON H, PARK J, SHON M. Corrosion protection by epoxy coating containing multi-walled carbon nanotubes [J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3): 849–853. DOI: https://doi.org/10.1016/j.jiec.2012.10.030.

    Article  Google Scholar 

  14. GONZÁLEZ S, MIRZA ROSCA I C, SOUTO R M. Investigation of the corrosion resistance characteristics of pigments in alkyd coatings on steel [J]. Progress in Organic Coatings, 2001, 43(4): 282–285. DOI: https://doi.org/10.1016/s0300-9440(01)00210-7.

    Article  Google Scholar 

  15. GONZÁLEZ S, CÁCERES F, FOX V, et al. Resistance of metallic substrates protected by an organic coating containing aluminum powder [J]. Progress in Organic Coatings, 2003, 46(4): 317–323. DOI: https://doi.org/10.1016/s0300-9440(03)00021-3.

    Article  Google Scholar 

  16. SHOURGESHTY M, ALIOFKHAZRAEI M, KARIMZADEH A, et al. Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings [J]. Materials Research Express, 2017, 4(9): 096406. DOI: https://doi.org/10.1088/2053-1591/aa87d5.

    Article  Google Scholar 

  17. OSTOVAN F, HASANZADEH E, TOOZANDEHJANI M, et al. A combined friction stir processing and ball milling route for fabrication Al5083-Al2O3 nanocomposite [J]. Materials Research Express, 2019, 6(6): 065012. DOI: https://doi.org/10.1088/2053-1591/ab0a88.

    Article  Google Scholar 

  18. OSTOVAN F, MATORI K A, TOOZANDEHJANI M, et al. Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders [J]. International Journal of Materials Research, 2021, 106(6): 636–640. DOI: https://doi.org/10.3139/146.111232.

    Article  Google Scholar 

  19. TOOZANDEHJANI M, OSTOVAN F. Microstructural and mechanical characterization of CNT- and Al2O3-reinforced aluminum matrix nanocomposites prepared by powder metallurgy route [J]. Metallography, Microstructure, and Analysis, 2017, 6(6): 541–552. DOI: https://doi.org/10.1007/s13632-017-0395-0.

    Article  Google Scholar 

  20. LIU Shuan, GU Lin, ZHAO Hai-chao, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. Journal of Materials Science & Technology, 2016, 32(5): 425–431. DOI: https://doi.org/10.1016/j.jmst.2015.12.017.

    Article  Google Scholar 

  21. WANG Chuan-xing, HAN Yu-ying, WANG Wen-xue, et al. Polyvinyl chloride/epoxy double layer powder coating enhances coating adhesion and anticorrosion protection of substrate [J]. Progress in Organic Coatings, 2021, 158: 106335. DOI: https://doi.org/10.1016/j.porgcoat.2021.106335.

    Article  Google Scholar 

  22. XIA Yun-qing, HE Yi, CHEN Chun-lin, et al. MoS2 nanosheets modified SiO2 to enhance the anticorrosive and mechanical performance of epoxy coating [J]. Progress in Organic Coatings, 2019, 132: 316–327. DOI: https://doi.org/10.1016/j.porgcoat.2019.04.002.

    Article  Google Scholar 

  23. XIE Yu-hui, CHEN Ming-zhi, XIE De-long, et al. A fast, low temperature zinc phosphate coating on steel accelerated by graphene oxide [J]. Corrosion Science, 2017, 128: 1–8. DOI: https://doi.org/10.1016/j.corsci.2017.08.033.

    Article  Google Scholar 

  24. RAMEZANZADEH B, GHASEMI E, MAHDAVIAN M, et al. Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings [J]. Carbon, 2015, 93: 555–573. DOI: https://doi.org/10.1016/j.carbon.2015.05.094.

    Article  Google Scholar 

  25. JIANG Cong-cong, XIAO Gui-yong, ZHANG Xian, et al. Formation and corrosion resistance of a phosphate chemical conversion coating on medium carbon low alloy steel [J]. New Journal of Chemistry, 2016, 40(2): 1347–1353. DOI: https://doi.org/10.1039/C5NJ02245B.

    Article  Google Scholar 

  26. SHIBLI S M A, CHACKO F. Development of nano TiO2-incorporated phosphate coatings on hot dip zinc surface for good paintability and corrosion resistance [J]. Applied Surface Science, 2011, 257(7): 3111–3117. DOI: https://doi.org/10.1016/j.apsusc.2010.10.125.

    Article  Google Scholar 

  27. AGHILI M, YAZDI M K, RANJBAR Z, et al. Anticorrosion performance of electro-deposited epoxy/amine functionalized graphene oxide nanocomposite coatings [J]. Corrosion Science, 2021, 179: 109143. DOI: https://doi.org/10.1016/j.corsci.2020.109143.

    Article  Google Scholar 

  28. WU Hao, CHENG Li, LIU Cheng-bao, et al. Engineering the interface in graphene oxide/epoxy composites using bio-based epoxy-graphene oxide nanomaterial to achieve superior anticorrosion performance [J]. Journal of Colloid and Interface Science, 2021, 587: 755–766. DOI: https://doi.org/10.1016/j.jcis.2020.11.035.

    Article  Google Scholar 

  29. POURHASHEM S, DUAN Ji-zhou, ZHOU Zi-yang, et al. Investigating the effects of chitosan solution and chitosan modified TiO2 nanotubes on the corrosion protection performance of epoxy coatings [J]. Materials Chemistry and Physics, 2021, 270: 124751. DOI: https://doi.org/10.1016/j.matchemphys.2021.124751.

    Article  Google Scholar 

  30. DHOKE S K, KHANNA A S, SINHA T J M. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings [J]. Progress in Organic Coatings, 2009, 64(4): 371–382. DOI: https://doi.org/10.1016/j.porgcoat.2008.07.023.

    Article  Google Scholar 

  31. DHOKE S K, MANGAL SINHA T J, KHANNA A S. Effect of nano-Al2O3 particles on the corrosion behavior of alkyd based waterborne coatings [J]. Journal of Coatings Technology and Research, 2009, 6(3): 353–368. DOI: https://doi.org/10.1007/s11998-008-9127-3.

    Article  Google Scholar 

  32. PRIYANKA D, NALINI D. Designing a corrosion resistance system using modified graphene oxide-epoxy microcapsules for enhancing the adhesion strength of the epoxy coatings [J]. Applied Surface Science Advances, 2022, 10: 100269. DOI: https://doi.org/10.1016/j.apsadv.2022.100269.

    Article  Google Scholar 

  33. WEI Hong-yu, XIA Jun, ZHOU Wan-lin, et al. Adhesion and cohesion of epoxy-based industrial composite coatings [J]. Composites Part B: Engineering, 2020, 193: 108035. DOI: https://doi.org/10.1016/j.compositesb.2020.108035.

    Article  Google Scholar 

  34. ZHANG Yong-xing, ZHAO Min, ZHANG Jiao-xia, et al. Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride [J]. Journal of Polymer Research, 2018, 25(5): 130. DOI: https://doi.org/10.1007/s10965-018-1518-2.

    Article  Google Scholar 

  35. ABDUS SAMAD U, ALAM M A, SEIKH A H, et al. Corrosion resistance performance of epoxy coatings incorporated with unmilled micro aluminium pigments [J]. Crystals, 2023, 13(4): 558. DOI: https://doi.org/10.3390/cryst13040558.

    Article  Google Scholar 

  36. XIAO Xin-zhe, YE Ze-quan, MENG Guo-zhe, et al. Mussel-inspired preparation of superhydrophobic mica nanosheets for long-term anticorrosion and self-healing performance of epoxy coatings [J]. Progress in Organic Coatings, 2023, 178: 107456. DOI: https://doi.org/10.1016/j.porgcoat.2023.107456.

    Article  Google Scholar 

  37. SHI Yan, CHEN Chong-yi, LI Yi-guo, et al. Achieving dual functional corrosion resistance for epoxy coatings under alternating hydrostatic pressure via constructing P-phenylenediamine/Ti3C2Tx hybrids [J]. Carbon, 2023, 201: 1048–1060. DOI: https://doi.org/10.1016/j.carbon.2022.09.089.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Mr. Moein EYSHABADI for his assistant in the production of the graphical illustrations.

Author information

Authors and Affiliations

Authors

Contributions

Meysam TOOZANDEHJANI and Farhad OSTOVAN conceived and designed the experimental procedure. Farhad OSTOVAN supervised the entire research work. Farhad OSTOVAN and Meysam TOOZANDEHJANI carried out the experimental procedure. Pooria MOOZARM NIA provided valuable scientific advice for the entire experiment and assisted the research in analyzing data and manuscript preparation. Farhad OSTOVAN and Meysam TOOZANDEHJAN wrote the paper, while the final manuscript was revised by Ebrahim ABOUZARI LOTF and Mahnaz SHAMSHIRSAZ.

Corresponding author

Correspondence to Farhad Ostovan.

Ethics declarations

Meysam TOOZANDEHJANI, Pooria MOOZARM NIA, Ebrahim ABOUZARI LOTF, Farhad OSTOVAN and Mahnaz SHAMSHIRSAZ declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toozandehjani, M., Moozarm Nia, P., Abouzari Lotf, E. et al. Aluminum composite powder as an additive in epoxy coatings for enhancement of corrosion protection of carbon steel. J. Cent. South Univ. 31, 723–736 (2024). https://doi.org/10.1007/s11771-024-5596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5596-5

Key words

关键词

Navigation