Skip to main content
Log in

Influence of tunnel axis stress on mechanical response and fracture characteristics of rock surrounding tunnel subjected to gradient stress

梯度应力条件下隧道轴向应力对围岩力学响应及破裂特性的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The excavation of deep underground engineering leads to a gradient stress within surrounding rocks in the radial direction of the tunnel. In this study, we investigated the mechanical response and fracture characteristics of rocks subjected to gradient stress under different axis stresses. During the experimental process, an acoustic emission (AE) system was used to capture the AE signals. The obtained results showed that the influence of axis stress on mechanical response of rock subjected to gradient stress is similar to the test results obtained by classical true triaxial compression tests. When the axis stress is below the critical strength, as the axis stress increases, the characteristic stress increases, resulting in an increase in rock strength. However, once the axis stress exceeds the critical strength, localized failure occurs during the application of the axis stress, leading to a decrease in rock strength. In this case, only part of the cracks coalesces to form oblique macro cracks that do not penetrate the entire rock specimen. The AE signals indicate that the proportion of shear cracks decreases as the axis stress increases. The axis stress significantly suppresses the formation of macro shear cracks resulting from the coalescence of micro tensile cracks.

摘要

深埋地下工程的开挖导致隧洞径向方向围岩内部存在梯度应力。基于此, 本文研究了梯度应力 条件下围岩在不同轴向应力作用下的力学响应和断裂特征, 并且在试验过程中, 采用声发射(AE)系统 采集了岩石破裂声发射信号。结果表明:梯度应力作用下, 轴向应力对砂岩力学响应的影响与经典真 三轴压缩试验结果相似。当轴向应力小于临界强度时, 随着轴向应力的增大, 砂岩特征应力逐渐增 大, 显著提高了砂岩承载能力。但是当轴向应力超过临界强度时, 高轴向应力的加载过程会导致砂岩 产生局部破坏, 引起砂岩特征应力的降低, 此时, 砂岩内部仅有部分裂纹合并贯通, 形成斜向宏观裂 隙, 但并未贯穿整个砂岩试样。声发射特征信号分析结果表明, 随着轴向应力的增大, 砂岩在破坏过 程中产生的剪切裂纹比例逐渐减小, 拉伸裂纹在整个新生裂纹中占据主导地位, 并控制着砂岩的破 坏。这反映了在梯度应力条件下, 随着轴向应力的增大, 围岩内部因微观拉伸裂纹合并而形成宏观剪 切裂纹的活动会受到明显的抑制作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. HE M C, MIAO J L, FENG J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286–298. DOI: https://doi.org/10.1016/j.ijrmms.2009.09.003.

    Article  Google Scholar 

  2. FENG Xia-ting, ZHANG Xi-wei, KONG Rui, et al. A novel mogi type true triaxial testing apparatus and its use to obtain complete stress - strain curves of hard rocks [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1649–1662. DOI: https://doi.org/10.1007/s00603-015-0875-y.

    Article  Google Scholar 

  3. HUDSON J A, CROUCH S L, FAIRHURST C. Soft, stiff and servo-controlled testing machines: A review with reference to rock failure [J]. Engineering Geology, 1972, 6(3): 155–189. DOI: https://doi.org/10.1016/0013-7952(72)90001-4.

    Article  Google Scholar 

  4. PAN Peng-zhi, FENG Xia-ting, HUDSON J A. The influence of the intermediate principal stress on rock failure behaviour: A numerical study [J]. Engineering Geology, 2012, 124: 109–118. DOI: https://doi.org/10.1016/j.enggeo.2011.10.008.

    Article  Google Scholar 

  5. LIU Hui-min, LI Xue-long, YU Zhen-yu, et al. Influence of hole diameter on mechanical properties and stability of granite rock surrounding tunnels [J]. Physics of Fluids, 2023, 35(6): 064121. DOI: https://doi.org/10.1063/5.0154872.

    Article  Google Scholar 

  6. JIANG Jian-qing, FENG Xia-ting, YANG Cheng-xiang, et al. Failure characteristics of surrounding rocks along the radial direction of underground excavations: An experimental study [J]. Engineering Geology, 2021, 281: 105984. DOI: https://doi.org/10.1016/j.enggeo.2020.105984.

    Article  Google Scholar 

  7. FENG Xia-ting, CHEN Bing-rui, ZHANG Chuan-qing, et al. Mechanism, warning and dynamic control of rockburst development processes [M]. Science Press, Beijing, 2003. (in Chinese)

    Google Scholar 

  8. SU Guo-shao, JIANG Jian-qing, ZHAI Shao-bin, et al. Influence of tunnel axis stress on strainburst: An experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1551–1567. DOI: https://doi.org/10.1007/s00603-017-1181-7.

    Article  Google Scholar 

  9. MOGI K. Fracture and flow of rocks under high triaxial compression [J]. Journal of Geophysical Research, 1971, 76(5): 1255–1269. DOI: https://doi.org/10.1029/jb076i005p01255.

    Article  Google Scholar 

  10. HAIMSON B, CHANG C. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1–2): 285–296. DOI: https://doi.org/10.1016/s1365-1609(99)00106-9.

    Article  Google Scholar 

  11. HAIMSON B C, CHANG Chan-dong. True triaxial strength of the KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in situ stress [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): ETG 15. DOI: https://doi.org/10.1029/2001jb000647.

    Article  Google Scholar 

  12. ALEXEEV A D, REVVA V N, BACHURIN L L, et al. The effect of stress state factor on fracture of sandstones under true triaxial loading [J]. International Journal of Fracture, 2008, 149(1): 1–10. DOI: https://doi.org/10.1007/s10704-008-9214-6.

    Article  Google Scholar 

  13. YOU Ming-qing. True-triaxial strength criteria for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 115–127. DOI: https://doi.org/10.1016/j.ijrmms.2008.05.008.

    Article  Google Scholar 

  14. LEE H, HAIMSON B C. True triaxial strength, deformability, and brittle failure of granodiorite from the San Andreas Fault Observatory at Depth [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7): 1199–1207. DOI: https://doi.org/10.1016/j.ijrmms.2011.08.003.

    Article  Google Scholar 

  15. LI Xi-bing, DU Kun, LI Di-yuan. True triaxial strength and failure modes of cubic rock specimens with unloading the minor principal stress [J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2185–2196. DOI: https://doi.org/10.1007/s00603-014-0701-y.

    Article  Google Scholar 

  16. DUAN Min-ke, JIANG Chang-bao, YIN Wen-ming, et al. Experimental study on mechanical and damage characteristics of coal under true triaxial cyclic disturbance [J]. Engineering Geology, 2021, 295: 106445.

    Article  Google Scholar 

  17. DU Kun, TAO Ming, LI Xi-bing, et al. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance [J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437–3453. DOI: https://doi.org/10.1007/s00603-016-0990-4.

    Article  Google Scholar 

  18. MA Xiao-dong, RUDNICKI J W, HAIMSON B C. Failure characteristics of two porous sandstones subjected to true triaxial stresses: Applied through a novel loading path [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(4): 2525–2540. DOI: https://doi.org/10.1002/2016jb013637.

    Article  Google Scholar 

  19. HE Man-chao, E SOUSA L R, MIRANDA T, et al. Rockburst laboratory tests database—Application of data mining techniques [J]. Engineering Geology, 2015, 185: 116–130. DOI: https://doi.org/10.1016/j.enggeo.2014.12.008.

    Article  Google Scholar 

  20. LI Xi-bing, FENG Fan, LI Di-yuan, et al. Failure characteristics of granite influenced by sample height-to-width ratios and intermediate principal stress under true-triaxial unloading conditions [J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1321–1345. DOI: https://doi.org/10.1007/s00603-018-1414-4.

    Article  Google Scholar 

  21. JIANG Bang-you, GU Shi-tan, WANG Lian-guo, et al. Strainburst process of marble in tunnel-excavation-induced stress path considering intermediate principal stress [J]. Journal of Central South University, 2019, 26(4): 984–999. DOI: https://doi.org/10.1007/s11771-019-4065-z.

    Article  Google Scholar 

  22. HE Ben-guo, MENG Xiang-rui, FENG Xia-ting, et al. Effect of intermediate principal stress on the failure characteristics of an underground powerhouse [J]. Engineering Geology, 2022, 311: 106914. DOI: https://doi.org/10.1016/j.enggeo.2022.106914.

    Article  Google Scholar 

  23. CAI M. Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—Insight from numerical modeling [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 763–772. DOI: https://doi.org/10.1016/j.ijrmms.2007.07.026.

    Article  Google Scholar 

  24. DUAN K, KWOK C Y, MA X. DEM simulations of sandstone under true triaxial compressive tests [J]. Acta Geotechnica, 2017, 12(3): 495–510. DOI: https://doi.org/10.1007/s11440-016-0480-6.

    Article  Google Scholar 

  25. LI Ming-hui, YIN Guang-zhi, XU Jiang, et al. A novel true triaxial apparatus to study the geomechanical and fluid flow aspects of energy exploitations in geological formations [J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 4647–4659. DOI: https://doi.org/10.1007/s00603-016-1060-7.

    Article  Google Scholar 

  26. ZHAO Hong-gang, LIU Chao, HUANG Gun, et al. Experimental investigation on rockburst process and failure characteristics in trapezoidal tunnel under different lateral stresses [J]. Construction and Building Materials, 2020, 259: 119530. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119530.

    Article  Google Scholar 

  27. ZHAO Hong-gang, SONG Zhen-long, ZHANG Dong-ming, et al. True triaxial experimental study on mechanical characteristics and energy evolution of sandstone under various loading and unloading rates [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(1): 22. DOI: https://doi.org/10.1007/s40948-020-00212-7.

    Article  Google Scholar 

  28. ZHAO Hong-gang, GUN Huang, JIANG Chang-bao, et al. Mechanical properties and fracture mode transformation of rocks subjected to asymmetric radial stresses [J]. Bulletin of Engineering Geology and the Environment, 2022, 81(10): 434. DOI: https://doi.org/10.1007/s10064-022-02891-w.

    Article  Google Scholar 

  29. CAI M, KAISER P K, TASAKA Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 833–847. DOI: https://doi.org/10.1016/j.ijrmms.2004.02.001.

    Article  Google Scholar 

  30. BRACE W F, PAULDING B W, SCHOLZ C. Dilatancy in the fracture of crystalline rocks [J]. Journal of Geophysical Research, 1966, 71(16): 3939–3953. DOI: https://doi.org/10.1029/jz071i016p03939.

    Article  Google Scholar 

  31. LAJTAI E Z. Brittle fracture in compression [J]. International Journal of Fracture, 1974, 10(4): 525–536. DOI: https://doi.org/10.1007/BF00155255.

    Article  Google Scholar 

  32. MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1994, 31(6): 643–659. DOI: https://doi.org/10.1016/0148-9062(94)90005-1.

    Google Scholar 

  33. NICKSIAR M, MARTIN C D. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks [J]. Rock Mechanics and Rock Engineering, 2012, 45(4): 607–617. DOI: https://doi.org/10.1007/s00603-012-0221-6.

    Article  Google Scholar 

  34. LU Jun, YIN Guang-zhi, ZHANG Dong-ming, et al. True triaxial strength and failure characteristics of cubic coal and sandstone under different loading paths [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 135: 104439. DOI: https://doi.org/10.1016/j.ijrmms.2020.104439.

    Article  Google Scholar 

  35. AGGELIS D G. Classification of cracking mode in concrete by acoustic emission parameters [J]. Mechanics Research Communications, 2011, 38(3): 153–157. DOI: https://doi.org/10.1016/j.mechrescom.2011.03.007.

    Article  Google Scholar 

  36. HU Xiao-chuan, SU Guo-shao, CHEN Guan-yan, et al. Experiment on rockburst process of borehole and its acoustic emission characteristics [J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 783–802. DOI: https://doi.org/10.1007/s00603-018-1613-z.

    Article  Google Scholar 

  37. FJÆR E, RUISTUEN H. Impact of the intermediate principal stress on the strength of heterogeneous rock [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B2): ECV3–1–ECV3–10. DOI: https://doi.org/10.1029/2001JB000277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHAO Hong-gang developed the overarching research goals, conducted experiments and edited the draft of manuscript. ZHANG Dong-ming conducted the literature review and edited the manuscript. JIANG Chang-bao and LI Ming-hui revised the manuscript and provided fund support.

Corresponding author

Correspondence to Dong-ming Zhang  (张东明).

Ethics declarations

ZHAO Hong-gang, ZHANG Dong-ming, JIANG Chang-bao and LI Ming-hui declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52074044, 52174082) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Hg., Zhang, Dm., Jiang, Cb. et al. Influence of tunnel axis stress on mechanical response and fracture characteristics of rock surrounding tunnel subjected to gradient stress. J. Cent. South Univ. 31, 912–929 (2024). https://doi.org/10.1007/s11771-024-5618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5618-3

Key words

关键词

Navigation