Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-07T03:54:48.225Z Has data issue: false hasContentIssue false

Genetic Causal Relationship Between Alanine Aminotransferase Levels and Risk of Gestational Diabetes Mellitus: Mendelian Randomization Analysis Based on Two Samples

Published online by Cambridge University Press:  18 April 2024

Lihua Yin
Affiliation:
The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
Yifang Hu
Affiliation:
The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
Xiaoxia Hu
Affiliation:
The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
Xiaolei Huang
Affiliation:
The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
Yingyuan Chen
Affiliation:
The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
Yisheng Zhang*
Affiliation:
The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
*
Corresponding author: Yisheng Zhang; Email: zhangysnbu@163.com
Get access

Abstract

Gestational diabetes mellitus (GDM) is a frequent complication of pregnancy. The specific mechanisms underlying GDM have not yet been fully elucidated. Contemporary research indicates a potential association between liver enzyme irregularities and an increased risk of metabolic disorders, including diabetes. The alanine aminotransferase (ALT) level is recognized as a sensitive marker of liver injury. An increase in ALT levels is hypothesized to be linked to the pathogenesis of insulin resistance and diabetes. Nonetheless, the definitive causal link between ALT levels and GDM still needs to be determined. This investigation utilized two-sample Mendelian randomization (MR) to examine the genetic causation between alanine aminotransferase (ALT) and GDM. We acquired alanine aminotransferase (ALT)-related GWAS summary data from the UK Biobank, Million Veteran Program, Rotterdam Study, and Lifeline Study. Gestational diabetes data were obtained from the FinnGen Consortium. We employed various MR analysis techniques, including inverse-variance weighted (IVW), MR Egger, weighted median, simple, and weighted weighting. In addition to MR-Egger intercepts, Cochrane’s Q test was also used to assess heterogeneity in the MR data, and the MR-PRESSO test was used to assess horizontal pleiotropy. To assess the association’s sensitivity, a leave-one-out approach was employed. The IVW results confirmed the independent risk factor for GDM development, as indicated by the ALT level (p = .011). As shown by leave-one-out analysis, horizontal pleiotrophy did not significantly skew the causative link (p > .05). Our dual-sample MR analysis provides substantiated evidence of a genetic causal relationship between alanine aminotransferase (ALT) levels and gestational diabetes.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajmera, V. H., Gunderson, E. P., VanWagner, L. B., Lewis, C. E., Carr, J. J., & Terrault, N. A. (2016). Gestational diabetes mellitus is strongly associated with non-alcoholic fatty liver disease. The American Journal of Gastroenterology, 111, 658664. https://doi.org/10.1038/ajg.2016.57 CrossRefGoogle ScholarPubMed
An, R., Ma, S., Zhang, N., Lin, H., Xiang, T., Chen, M., & Tan, H. (2022). AST-to-ALT ratio in the first trimester and the risk of gestational diabetes mellitus. Frontiers in Endocrinology, 13, 1017448. https://doi.org/10.3389/fendo.2022.1017448 CrossRefGoogle ScholarPubMed
Bakhshimoghaddam, F., Razmi, H., Malihi, R., Mansoori, A., & Ahangarpour, A. (2023). The association between the dietary inflammatory index and gestational diabetes mellitus: A systematic review of observational studies. Clinical Nutrition ESPEN, 57, 606612. https://doi.org/10.1016/j.clnesp.2023.08.007 CrossRefGoogle ScholarPubMed
Chen, V. L., Hawa, F., Berinstein, J. A., Reddy, C. A., Kassab, I., Platt, K. D., Hsu, C.-Y., Steiner, C. A., Louissaint, J., Gunaratnam, N. T., & Sharma, P. (2021). Hepatic steatosis is associated with increased disease severity and liver injury in coronavirus disease-19. Digestive Diseases and Sciences, 66, 31923198. https://doi.org/10.1007/s10620-020-06618-3 CrossRefGoogle ScholarPubMed
Chen, X., Zhang, S., Wu, X., Lei, Y., Lei, B., & Zhao, Z. (2024). Inflammatory cytokines and oral lichen planus: A Mendelian randomization study. Frontiers in Immunology, 15, 1332317. https://doi.org/10.3389/fimmu.2024.1332317 CrossRefGoogle ScholarPubMed
Erdoğan, S., Ozdemir, O., Doğan, H. O., Sezer, S., Atalay, C. R., Meriç, F., Yilmaz, F. M., & Koca, Y. (2014). Liver enzymes, mean platelet volume, and red cell distribution width in gestational diabetes. Turkish Journal of Medical Sciences, 44, 121125. https://doi.org/10.3906/sag-1301-41 CrossRefGoogle ScholarPubMed
Gao, C., Sun, X., Lu, L., Liu, F., & Yuan, J. (2019). Prevalence of gestational diabetes mellitus in mainland China: A systematic review and meta-analysis. Journal of Diabetes Investigation, 10, 154162. https://doi.org/10.1111/jdi.12854 CrossRefGoogle ScholarPubMed
Hua, S., Qi, Q., Kizer, J. R., Williams-Nguyen, J., Strickler, H. D., Thyagarajan, B., Daviglus, M., Talavera, G. A., Schneiderman, N., Cotler, S. J., Cai, J., Kaplan, R., & Isasi, C. R. (2021). Association of liver enzymes with incident diabetes in US Hispanic/Latino adults. Diabetic Medicine, 38, e14522. https://doi.org/10.1111/dme.14522 CrossRefGoogle ScholarPubMed
Huang, L.-L., Guo, D.-H., Xu, H.-Y., Tang, S.-T., Wang, X. X., Jin, Y.-P., & Wang, P. (2019). Association of liver enzymes levels with fasting plasma glucose levels in Southern China: A cross-sectional study. BMJ Open, 9, e025524. https://doi.org/10.1136/bmjopen-2018-025524 CrossRefGoogle ScholarPubMed
Kondracki, A. J., Valente, M. J., Ibrahimou, B., & Bursac, Z. (2022). Risk of large for gestational age births at early, full and late term in relation to pre-pregnancy body mass index: Mediation by gestational diabetes status. Paediatric and Perinatal Epidemiology, 36, 566576. https://doi.org/10.1111/ppe.12809 CrossRefGoogle ScholarPubMed
Kong, M., Liu, C., Guo, Y., Gao, Q., Zhong, C., Zhou, X., Chen, R., Xiong, G., Yang, X., Hao, L., & Yang, N. (2018). Higher level of GGT during mid-pregnancy is associated with increased risk of gestational diabetes mellitus. Clinical Endocrinology, 88, 700705. https://doi.org/10.1111/cen.13558 CrossRefGoogle ScholarPubMed
Lee, K. W., Ching, S. M., Ramachandran, V., Yee, A., Hoo, F. K., Chia, Y. C., Wan Sulaiman, W. A., Suppiah, S., Mohamed, M. H., & Veettil, S. K. (2018). Prevalence and risk factors of gestational diabetes mellitus in Asia: A systematic review and meta-analysis. BMC Pregnancy and Childbirth, 18, 494. https://doi.org/10.1186/s12884-018-2131-4 CrossRefGoogle Scholar
Lenoir-Wijnkoop, I., van der Beek, E. M., Garssen, J., Nuijten, M. J. C., & Uauy, R. D. (2015). Health economic modeling to assess short-term costs of maternal overweight, gestational diabetes, and related macrosomia — A pilot evaluation. Frontiers in Pharmacology, 6, 103. https://doi.org/10.3389/fphar.2015.00103 CrossRefGoogle ScholarPubMed
McIntyre, H. D., Catalano, P., Zhang, C., Desoye, G., Mathiesen, E. R., & Damm, P. (2019). Gestational diabetes mellitus. Nature Reviews Disease Primers, 5, 47. https://doi.org/10.1038/s41572-019-0098-8 CrossRefGoogle ScholarPubMed
Pazoki, R., Vujkovic, M., Elliott, J., Evangelou, E., Gill, D., Ghanbari, M., van der Most, P. J., Pinto, R. C., Wielscher, M., Farlik, M., Zuber, V., de Knegt, R. J., Snieder, H., Uitterlinden, A. G., Cohort Study, Lifelines, Lynch, J. A., Jiang, X., Said, S., Kaplan, D. E., … Million Veteran Program, VA. (2021). Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes. Nature Communications, 12, 2579. https://doi.org/10.1038/s41467-021-22338-2 CrossRefGoogle ScholarPubMed
Peracchi, A., & Polverini, E. (2022). Using steady-state kinetics to quantitate substrate selectivity and specificity: A case study with two human transaminases. Molecules, 27, 1398. https://doi.org/10.3390/molecules27041398 CrossRefGoogle ScholarPubMed
Sakurai, Y., Kubota, N., Yamauchi, T., & Kadowaki, T. (2021). Role of insulin resistance in MAFLD. International Journal of Molecular Sciences, 22, 4156. https://doi.org/10.3390/ijms22084156 CrossRefGoogle ScholarPubMed
Song, S., Zhang, Y., Qiao, X., Duo, Y., Xu, J., Peng, Z., Zhang, J., Chen, Y., Nie, X., Sun, Q., Yang, X., Wang, A., Lu, Z., Sun, W., Fu, Y., Dong, Y., Yuan, T., & Zhao, W. (2022). ALT/AST as an independent risk factor of gestational diabetes mellitus compared with TG/HDL-C. International Journal of General Medicine, 15, 115121. https://doi.org/10.2147/IJGM.S332946 CrossRefGoogle ScholarPubMed
Wang, H., Li, N., Chivese, T., Werfalli, M., Sun, H., Yuen, L., Hoegfeldt, C. A., Elise Powe, C., Immanuel, J., Karuranga, S., Divakar, H., Levitt, Na., Li, C., Simmons, D., Yang, X., & IDF Diabetes Atlas Committee Hyperglycaemia in Pregnancy Special Interest Group. (2022). IDF diabetes atlas: Estimation of global and regional gestational diabetes mellitus prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s criteria. Diabetes Research and Clinical Practice, 183, 109050. https://doi.org/10.1016/j.diabres.2021.109050 CrossRefGoogle ScholarPubMed
Zhao, W., Zhang, L., Zhang, G., Varkaneh, H. K., Rahmani, J., Clark, C., Ryan, P. M., Abdulazeem, H. M., & Salehisahlabadi, A. (2020). The association of plasma levels of liver enzymes and risk of gestational diabetes mellitus: A systematic review and dose-response meta-analysis of observational studies. Acta Diabetologica, 57, 635644. https://doi.org/10.1007/s00592-019-01458-8 CrossRefGoogle ScholarPubMed
Zheng, X., Ke, Y., Feng, A., Yuan, P., Zhou, J., Yu, Y., Wang, X., & Feng, W. (2016). The mechanism by which amentoflavone improves insulin resistance in hepG2 cells. Molecules (Basel, Switzerland), 21, 624. https://doi.org/10.3390/molecules21050624 CrossRefGoogle ScholarPubMed