Skip to main content
Log in

Designing a Robotic Vehicle for Recycling Space Debris

  • AUTOMATION AND CONTROL IN ENGINEERING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The concept of a spacecraft for collecting space debris assumes that its orbit continuously changes in relation to the location of space debris in various orbits. The highest density of space debris, which is 10–6 t/km3, is observed at orbital altitudes of 800–1000 and 1400–1500 km with an inclination of 60°–80°. To this end, stable trajectories in the sense of Zhukovskii should be determined. We propose a method for selecting the orbit of a space debris collector, including a robotic spacecraft, using the theorem on the stability of trajectories in the sense of Zhukovskii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. ESA’s Annual Space Environment Report. Esa Unclassified–Releasable to the Public. https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf.

  2. Taylor, M.W., Orbital Debris: Technical and Legal Issues and Solutions, Montreal: Institute of Air and Space Law, 2006.

    Google Scholar 

  3. Veniaminov, S.S. and Chervonov, A.M., Kosmicheskii musor - ugroza chelovechestvu (Space Debris–A Threat to Humanity), Moscow: Izd-vo Inst. Kosmich. Issledovanii Ross. Akad. Nauk, 2013.

  4. Adushkin, V.V., Aksenov, O.Yu., Veniaminov, S.S., Kozlov, S.I., and Tyurenkova, V.V., The small orbital debris population and its impact on space activities and ecological safety, Acta Astronaut., 2019, vol. 176, pp. 591–597. https://doi.org/10.1016/j.actaastro.2020.01.015

    Article  Google Scholar 

  5. Mironov, V.V. and Usovik, I.V., Retrospective of the space debris problem. Part 1. Technogenic clogging of space and means of its control, Cosmic Res., 2020, vol. 58, no. 2, pp. 92–104. https://doi.org/10.1134/S0010952520020070

    Article  Google Scholar 

  6. Makarov, Yu.N., Space debris monitoring: Problems and solutions, Nanoindustriya, 2019, vol. 12, no. 1, pp. 6–14. https://doi.org/10.22184/1993-8578.2019.12.1.6.14

    Article  Google Scholar 

  7. Mironov, V.V. and Murtazov, A.K., Retrospective on the problem of space debris. Part 2. Monitoring of space debris of natural origin in near-Earth space using optical methods of meteor astronomy, Cosmic Res., 2021, vol. 59, no. 1, pp. 36–45. https://doi.org/10.1134/S0010952521010056

    Article  Google Scholar 

  8. Osnovy teorii poleta kosmicheskikh apparatov (Fundamentals of Spacecraft Flight Theory), Narimanov, G.S. and Tikhonravov, M.K., Eds., Moscow: Mashinostroenie, 1972.

    Google Scholar 

  9. Barkova, M.E., Zhukov, A.O., Kartsan, I.N., Kuznetsova, V.O., Ulanov, D.V., Kravchenko, I.N., and Khasyanova, D.U., A robotic collector of space debris, J. Mach. Manuf. Reliab., 2023, vol. 52, no. 5, pp. 411–421. https://doi.org/10.3103/s1052618823050035

    Article  Google Scholar 

  10. Khan, M.A., Khan, D.M.Z., Khan, H., Hanzla, M., Jamal, M., Khalid, T., and Ullah, N., Garbage collector robot, Indian J. Sci. Technol., 2020, vol. 13, no. 20, pp. 2065–2070. https://doi.org/10.17485/ijst/v13i20.212

    Article  Google Scholar 

  11. Barkova, M.E., RF Patent 2686415, 2019.

  12. Barkova, M.E., Space vehicle for utilizing space debris in near-Earth space, Tr. Mosk. Aviats. Inst., 2018, no. 103, p. 14.

  13. Druzhinina, O.V., On methods of stability research in the sense of N.E. Zhukovsky for nonlinear dynamical systems, Sistemy upravleniya, tekhnicheskie sistemy. Ustoichivost’, stabilizatsiya, puti i metody issledovaniya. Sb. trudov Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 95-letiyu so dnya rozhdeniya professora A.A. Shestakova (Control Systems, Technical Systems. Stability, Stabilization, Ways and Methods of Research: Proc. Int. Sci. and Pract. Conf. Dedicated to the 95th Birthday of Professor A.A. Shestakov), Masina, O.N. and Gladkikh, O.B., Eds., Elets, Lipetsk oblast: Eletskii Gos. Univ. im. I.A. Bunina, 2015, pp. 12–20.

  14. Druzhinina, O.V. and Masina, O.N., Metody analiza ustoichivosti dinamicheskikh sistem intellektnogo upravleniya (Methods of Stability Analysis of Dynamic Systems of Intelligent Control), Moscow: Lenand, 2016.

  15. Yang, X., Liapunov asymptotic stability and Zhukovskij asymptotic stability, Chaos, Solitons Fractals, 1995, vol. 11, no. 13, pp. 1995–1999. https://doi.org/10.1016/s0960-0779(99)00089-2

    Article  MathSciNet  Google Scholar 

  16. Seidelmann, P.K., Archinal, B.A., A’hearn, M.F., Conrad, A., Consolmagno, G.J., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Oberst, J., Stooke, P., Tedesco, E.F., Tholen, D.J., Thomas, P.C., and Williams, I.P., Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006, Celestial Mech. Dyn. Astron., 2007, vol. 98, no. 3, pp. 155–180. https://doi.org/10.1007/s10569-007-9072-y

    Article  Google Scholar 

  17. Vepa, R., Dynamics and Control of Autonomous Space Vehicles and Robotics, Cambridge Univ. Press, 2019. https://doi.org/10.1017/9781108525404

    Book  Google Scholar 

  18. Opiela, J.N., Ostrom, C.L., and Marichalar, J.J., Debris Assessment Software (DAS) Reentry Risk Analysis: Mission Planning for Compliance with NASA Standards, 2017.

  19. Opiela, J.N., Hillary, E., Whitlock, D.O., and Hennigan, M., Debris Assessment Software User’s Guide, Lyndon B. Johnson Space Center, 2019.

  20. Klinkrad, H., Space Debris: Models and Risk Analysis, Springer Praxis Books, Berlin: Springer, 2006. https://doi.org/10.1007/3-540-37674-7

  21. Kessler, D.J., Johnson, N.L., Liou, J.-C., and Matney, M.J., The Kessler Syndrome: Implications of Future Space Operations, NASA, 2010.

    Google Scholar 

  22. Jasper, L.E.Z., Seubert, C.R., Schaub, H., Trushkyakov, V., and Yutkin, E., Tethered tug for large low earth orbit debris removal, Advances in the Astronautical Sciences, Charleston, 2012, AAS/AIAA, 2012, pp. 2223–2242.

  23. Pikalov, R.S. and Yudintsev, V.V., Review and selection of large space debris retraction vehicles, Tr. Mosk. Aviats. Inst., 2018, no. 100, p. 2.

  24. Liou, J.-C., Johnson, N.L., Krisko, P.H., Anz-Meador, P.D., et al., The New NASA Orbital Debris Engineering Model ORDEM2000, NASA/TP-2002-210780, S-890, NAS 1.60:210780, NASA, 2002.

    Google Scholar 

  25. Matney, M., An Overview of NASA’s Orbital Debris Engineering Model, Orbital Debris Program Office, Houston, Texas: 2010.

    Google Scholar 

Download references

Funding

This article was prepared with financial support from the fund of the President of the Russian Federation (project no. NSh-1357.2022.6 “Models, Methods, and Means for Obtaining and Processing Information about Space Objects in a Wide Spectral Range of Electromagnetic Waves”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kravchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Shmatikov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkova, M.E., Zhukov, A.O., Kartsan, I.N. et al. Designing a Robotic Vehicle for Recycling Space Debris. J. Mach. Manuf. Reliab. 53, 157–163 (2024). https://doi.org/10.1134/S105261882402002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S105261882402002X

Keywords:

Navigation