Skip to main content
Log in

Simulation of Low-Pressure Inductively Coupled Plasma with Displacement Potential and Gas Flow

  • PLASMA DIAGNOSTICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The dependence of the parameters of low-pressure inductively coupled argon plasma (13.3–113 Pa) and field frequency of 13.56 MHz at the coil on the potential applied to the electrode and on gas flow rate up to 4000 sccm is numerically studied. The model is developed in the COMSOL Multiphysics environment and verified with experimental data, as well as over the Knudsen number. As a result of a numerical experiment, it is revealed as follows: when the displacement potential increases linearly, the density of charged particles increases exponentially and a slight increase in the electron temperature is observed; when the gas flow rate increases linearly, the density of charged particles increases exponentially, the density of excited states has an extremum at 2000 sccm, and the gas and electron temperature increases linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. I. Sh. Abdullin, V. S. Zheltukhin, and N. F. Kashapov, Radio-Frequency Plasma-Jet Material Processing at Low Pressures (Kazan. Gos. Technol. Univ., Kazan, 2000) [in Russian].

    Google Scholar 

  2. P. L. G. Ventzek, T. J. Sommerer, R. J. Hoekstra, and M. J. Kushner, Appl. Phys. Lett. 63, 605 (1993).

    Article  ADS  Google Scholar 

  3. H. Li, T. Xu, J. Chen, H. Zhou, and H. Liu, Appl. Surf. Sci. 227, 364 (2004).

    Article  ADS  Google Scholar 

  4. N. Kosku, H. Murakami, S. Higashi, and S. Miyazaki, Appl. Surf. Sci. 244, 39 (2005).

    Article  ADS  Google Scholar 

  5. D.-Q. Wen, W. Liu, F. Gao, M. Lieberman, and Y.‑N. Wang, Plasma Sources Sci. Technol. 25, 045009 (2016).

    Article  ADS  Google Scholar 

  6. K.-Y. Kim, K.-H. Kim, J.-H. Moon, and C.-W. Chung, Phys. Plasmas 27, 093504 (2020).

    Article  ADS  Google Scholar 

  7. Y. Hua, J. Song, Z. Hao, G. Zhang, and C. Ren, Plasma Sci. Technol. 20, 014005 (2018).

    Article  ADS  Google Scholar 

  8. S. Tinck, W. Boullart, and A. Bogaerts, J. Phys. D: A-ppl. Phys. 41, 065207 (2008).

    Article  ADS  Google Scholar 

  9. Y.-R. Zhang, Z.-Z. Zhao, C. Xue, F. Gao, and Y.‑N. Wang, J. Phys. D: Appl. Phys. 52, 295204 (2019).

    Article  ADS  Google Scholar 

  10. T. B. Reed, J. Appl. Phys. 32, 821 (1961).

    Article  ADS  Google Scholar 

  11. J. Mostaghimi, P. Proulx, and M. I. Boulos, Numer. Heat Transfer 8, 187 (1985).

    Article  ADS  Google Scholar 

  12. M. F. Romig, Phys. Fluids 3, 129 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  13. K. Racka-Szmidt, B. Stonio, J. Żelazko, M. Filipiak, and M. Sochacki, Materials 15, 123 (2021).

    Article  ADS  Google Scholar 

  14. Y. Zheng, H. Ye, J. Liu, J. Wei, L. Chen, and C. Li, Mater. Lett. 253, 276 (2019).

    Article  Google Scholar 

  15. T. Kumabe, Y. Ando, H. Watanabe, M. Deki, A. Tanaka, S. Nitta, Y. Honda, and H. Amano, Jpn. J. Appl. Phys. 60, SBBD03 (2021).

  16. M. Dineen, M. Loveday, A. Goodyear, M. Cooke, A. Newton, S. Baclet, C. Ward, and T. Hemakumara, Proc. SPIE 11329, 113290I (2020). https://doi.org/10.1117/12.2558732

  17. I. I. Fairushin and A. Y. Shemakhin, High Energy Chem. 57, S41 (2023).

    Article  Google Scholar 

  18. D. Jucius, V. Grigaliūnas, M. Juodėnas, A. Guobienė, and A. Lazauskas, Opt. Mater. 136, 113437 (2023).

    Article  Google Scholar 

  19. M. Nozaki, D. Terashima, A. Yoshigoe, T. Hosoi, T. Shimura, and H. Watanabe, Jpn. J. Appl. Phys. 59, SMMA07 (2020).

  20. P. Puranto, G. Hamdana, F. Pohlenz, J. Langfahl-Klabes, L. Daul, Z. Li, H. S. Wasisto, E. Peiner, and U. Brand, J. Phys.: Conf. Ser. 1319, 012008 (2019).

    Google Scholar 

  21. S. Yamada, K. Takeda, M. Toguchi, H. Sakurai, T. Nakamura, J. Suda, T. Kachi, and T. Sato, Appl. Phys. Express 13, 106505 (2020).

    Article  ADS  Google Scholar 

  22. T. Sugaya, D. Yoon, H. Yamazaki, K. Nakanishi, T. Sekiguchi, and S. Shoji, J. Microelectromech. Syst. 29, 62 (2019).

    Article  Google Scholar 

  23. B. Seok, S. Kim, D. Jun, and J. Jang, Electron. Lett. 55, 660 (2019).

    Article  ADS  Google Scholar 

  24. A. Y. Shemakhin, V. Zheltukhin, and A. Khubatkhuzin, J Phys.: Conf. Ser. 774, 012167 (2016).

    Google Scholar 

  25. A. Y. Shemakhin and V. Zheltukhin, Math. Montisnigri 39, 126 (2017).

    MathSciNet  Google Scholar 

  26. T. Terentev, A. Y. Shemakhin, E. Samsonova, and V. Zheltukhin, Plasma Sources Sci. Technol. 31, 094005 (2022).

    Article  ADS  Google Scholar 

  27. V. Zheltukhin, T. Terentev, A. Shemakhin, and E. Samsonova, J. Phys.: Conf. Ser. 1870, 012018 (2021).

    Google Scholar 

  28. V. S. Zheltukhin, A. Y. Shemakhin, T. N. Terentev, and E. S. Samsonova, in Mesh Methods for Boundary-Value Problems and Applications (Springer, Bazel, 2021), p. 587.

  29. V. Zheltukhin and A. Y. Shemakhin, Math. Models Comput. Simul. 6, 101 (2014).

    Article  Google Scholar 

  30. H. Lindner, A. Murtazin, S. Groh, K. Niemax, and A. Bogaerts, Anal. Chem. 83, 9260 (2011).

    Article  Google Scholar 

  31. D. Bernardi, V. Colombo, E. Ghedini, and A. Mentrelli, Pure Appl. Chem. 77, 359 (2005).

    Article  Google Scholar 

  32. C. Ferreira, J. Loureiro, and A. Ricard, J. Appl. Phys. 57, 82 (1985).

    Article  ADS  Google Scholar 

  33. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

  34. A. Yu. Shemakhin, Khim. Vys. Energ. 58, 64 (2024).

    Google Scholar 

  35. PHELPS database. http://www.lxcat.laplace.univ-tlse.fr. Cited June 4, 2013.

  36. COMSOL Multiphysics Software, version 5.6. https://www.comsol.com. Cited April 20, 2023.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-71-10055, https://rscf.ru/project/19-71-10055/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Shemakhin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by L. Mosina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shemakhin, A.Y. Simulation of Low-Pressure Inductively Coupled Plasma with Displacement Potential and Gas Flow. Plasma Phys. Rep. 50, 89–100 (2024). https://doi.org/10.1134/S1063780X23601694

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601694

Keywords:

Navigation