Skip to main content
Log in

Effect of Two-Dimensional Plasma Inhomogeneity in Magnetic Island on Threshold of Parametric Excitation of Trapped Upper Hybrid Waves and Level of Anomalous Absorption in ECRH Experiments

  • NONLINEAR PHENOMENA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The phenomenon of two-dimensional localization of the upper hybrid (UH) wave in a magnetic island was discovered. It was studied how this phenomenon affects the threshold and saturation level of the absolute parametric decay instability of the extraordinary wave, as a result of which a couple of two-dimensionally localized UH waves are excited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory, Ed. by T. M. O’Neil and D. L. Book (Benjamin, New York, 1969).

    Google Scholar 

  2. R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972).

    Google Scholar 

  3. A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer, New York, 1975).

    Book  Google Scholar 

  4. V. P. Silin, Sov. Phys. JETP 20, 1510 (1965).

    Google Scholar 

  5. L. M. Gorbunov and V. P. Silin, Sov. Phys. JETP 22, 1347 (1966).

    ADS  Google Scholar 

  6. E. A. Jackson, Phys. Rev. 153, 235 (1967).

    Article  ADS  Google Scholar 

  7. A. Bers, D. J. Kaup, and A. Reiman, Phys. Rev. Lett. 37, 182 (1976).

    Article  ADS  Google Scholar 

  8. D. J. Kaup, A. Reiman, and A. Bers, Rev. Mod. Phys. 51, 275 (1979).

    Article  ADS  Google Scholar 

  9. V. P. Silin, Sov. Phys. JETP 24, 1242 (1967).

    ADS  Google Scholar 

  10. W. Horton, Rev. Mod. Phys. 71, 735 (1999).

    Article  ADS  Google Scholar 

  11. A. D. Piliya, in Proceedings of the 10th International Conference on Phenomena in Ionized Gases, Oxford, 1971, p. 320.

  12. A. D. Piliya, Sov. Phys. JETP 37, 629 (1973).

    ADS  Google Scholar 

  13. M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).

    Article  ADS  Google Scholar 

  14. A. Reiman, Rev. Mod. Phys. 51, 331 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Bers, in Basic Plasma Physics II (Handbook of Plasma Physics), Ed. by A. A. Galeev and R. N. Sudan (Elsevier Science, Amsterdam, 1984).

    Google Scholar 

  16. E. Z. Gusakov and V. I. Fedorov, Sov. J. Plasma Phys. 5, 463 (1979).

    ADS  Google Scholar 

  17. A. Yu. Popov and E. Z. Gusakov, Plasma Phys. Controlled Fusion 57, 025022 (2015).

    Article  ADS  Google Scholar 

  18. A. Yu. Popov and E. Z. Gusakov, Europhys. Lett. 116, 45002 (2016).

    Article  ADS  Google Scholar 

  19. A. Yu. Popov and E. Z. Gusakov, JETP Lett. 105, 78 (2017).

    Article  ADS  Google Scholar 

  20. E. Z. Gusakov and A. Yu. Popov, Phys.—Usp. 63, 365 (2020).

    Article  Google Scholar 

  21. S. K. Hansen, S. K. Nielsen, J. Stober, J. Rasmussen, M. Stejner, M. Hoelzl, T. Jensen, and the ASDEX Upgrade team, Nucl. Fusion 60, 106008 (2020).

    Article  ADS  Google Scholar 

  22. S. K. Hansen, A. S. Jacobsen, M. Willensdorfer, S. K. Nielsen, J. Stober, K. Höfler, M. Maraschek, R. Fischer, M. Dunne, the EUROfusion MST1 team, and the USDEX Upgrade team, Plasma Phys. Controlled Fusion 63, 095002 (2021).

    Article  ADS  Google Scholar 

  23. A. Tancetti, S. K. Nielsen, J. Rasmussen, E. Z. Gusakov, A. Y. Popov, D. Moseev, T. Stange, M. G. Senstius, C. Killer, M. Vecséi, T. Jensen, M. Zanini, I. Abramovic, M. Stejner, G. Anda, et al., Nucl. Fusion 62, 074003 (2022).

    Article  ADS  Google Scholar 

  24. A. Tancetti, S. K. Nielsen, J. Rasmussen, D. Moseev, T. Stange, S. Marsen, M. Vecséi, C. Killer, G. A. Wurden, T. Jensen, M. Stejner, G. Anda, D. Dunai, S. Zoletnik, K. Rahbarnia, et al., Plasma Phys. Controlled Fusion 65, 015001 (2023).

    Article  ADS  Google Scholar 

  25. E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 23, 082503 (2016).

    Article  ADS  Google Scholar 

  26. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Rep. 49, 194 (2023).

    Article  ADS  Google Scholar 

  27. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Rep. 49, 936 (2023).

    Article  ADS  Google Scholar 

  28. E. Westerhof, S. K. Nielsen, J. W. Oosterbeek, M. Salewski, M. R. de Baar, W. A. Bongers, A. Bürger, B. A. Hennen, S. B. Korsholm, F. Leipold, D. Moseev, M. Stejner, and D. J. Thoen (the TEXTOR Team), Phys. Rev. Lett. 103, 125001 (2009).

    Article  ADS  Google Scholar 

  29. S. K. Nielsen, M. Salewski, E. Westerhof, W. Bongers, S. B. Korsholm, F. Leipold, J. W. Oosterbeek, D. Moseev, M. Stejner, and the TEXTOR Team, Plasma Phys. Controlled Fusion 55, 115003 (2013).

    Article  ADS  Google Scholar 

  30. E. Z. Gusakov, A. Yu. Popov, and P. V. Tretinnikov, Nucl. Fusion 59, 106040 (2019).

    Article  ADS  Google Scholar 

  31. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Controlled Fusion 62, 025028 (2020).

    Article  ADS  Google Scholar 

  32. E. Z. Gusakov and A. Yu. Popov, Nucl. Fusion 60, 076018 (2020).

    Article  ADS  Google Scholar 

  33. A. B. Altukhov, V. I. Arkhipenko, A. D. Gurchenko, E. Z. Gusakov, A. Yu. Popov, L. V. Simonchik, and M. S. Usachonak, Europhys. Lett. 126, 15002 (2019).

    Article  Google Scholar 

  34. A. I. Meshcheryakov, I. Yu. Vafin, and I. A. Grishina, Plasma Phys. Rep. 46, 1144 (2021).

    Article  ADS  Google Scholar 

  35. Yu. N. Dnestrovskij, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, A. V. Melnikov, A. R. Nemets, M. R. Nurgaliev, G. F. Subbotin, N. A. Solovev, D. Yu. Sychugov, and S. V. Cherkasov, Plasma Phys. Controlled Fusion 63, 055012 (2021).

    Article  ADS  Google Scholar 

  36. S. S. Abdullaev, K. H. Finken, M. W. Jakubowski, S. V. Kasilov, M. Kobayashi, D. Reiser, D. Reiter, A. M. Runov, and R. Wolf, Nucl. Fusion 43, 299 (2003).

    Article  ADS  Google Scholar 

  37. H. R. Koslowski, E. Westerhof, M. de Bock, I. Classen, R. Jaspers, Y. Kikuchi, A. Krämer-Flecken, A. Lazaros, Y. Liang, K. Löwenbrück, S. Varshney, M. von Hellermann, R. Wolf, O. Zimmermann, and the TEXTOR team, Plasma Phys. Controlled Fusion 48, B53 (2006).

    Article  Google Scholar 

  38. G. Bateman, MHD Instabilities (MIT Press, Cambridge, MA, 1978).

    Google Scholar 

  39. M. Yu. Kantor, A. J. H. Donné, R. Jaspers, H. van der Meiden, and TEXTOR Team, Plasma Phys. Controlled Fusion 51, 055002 (2009).

    Article  ADS  Google Scholar 

  40. M. Y. Kantor, G. Bertschinger, P. Bohm, A. Buerger, A. J. H. Donné, R. Jaspers, A. Krämer-Flecken, S. Mann, S. Soldatov, and Q. Zang, in Proceedings of the 36th EPS Conference on Plasma Physics, Sofia, 2009, ECA 33E, P-1.184 (2009).

  41. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics (Nauka, Moscow, 1974; Pergamon, Oxford, 1975).

  42. E. Z. Gusakov, A. Yu. Popov, and A. N. Saveliev, Plasma Phys. Controlled Fusion 56, 015010 (2014).

    Article  ADS  Google Scholar 

  43. V. V. Pustovalov and V. P. Silin, Theory of Plasmas, Ed. by D. V. Skobeltsyn, The Lebedev Physics Institute Series, Vol. 61 (Consultants Bureau, New York, 1975).

  44. J. Larsson, J. Plasma Phys. 40, 385 (1988).

    Article  ADS  Google Scholar 

  45. E. Z. Gusakov, A. Yu. Popov, and P. V. Tretinnikov, Plasma Phys. Controlled Fusion 61, 085008 (2019).

    Article  ADS  Google Scholar 

  46. B. I. Cohen, R. H. Cohen, W. McCay Nevins, and T. D. Rognlien, Rev. Mod. Phys. 63, 949 (1991).

    Article  ADS  Google Scholar 

  47. E. Z. Gusakov and A. Yu. Popov, JETP Lett. 116, 36 (2022).

    Article  ADS  Google Scholar 

  48. V. I. Petviashvili, JETP Lett. 23, 627 (1976).

    ADS  Google Scholar 

  49. A. K. Nekrasov, Sov. J. Plasma Phys. 12, 557 (1986).

    Google Scholar 

Download references

Funding

Analytical research was supported by the Russian Science Foundation (project no. 22-12-00010); numerical simulations were supported by Ioffe Institute under the State Contract no. 0040-2019-0023, and the development of the computer code for simulating the PDI saturation was supported by Ioffe Institute under the State Contract no. 0034-2021-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Popov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Grishina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

The set of equations describing the decay of the primary UH wave, \({{\varphi }_{n}} \propto \exp \left( { - i{{\omega }_{n}}t} \right)\), into the secondary IB wave, \({{\varphi }_{{{\text{IB}}}}} \propto \exp \left( { - i\left( {{{\omega }_{l}} - {{\omega }_{n}}} \right)t} \right)\), and the secondary UH wave, \({{\varphi }_{l}} \propto \exp \left( {i{{\omega }_{l}}t} \right)\), is as follows:

$$\left\{ \begin{gathered} {{{\hat {D}}}_{{{\text{UH}}}}}\left( {x,{{\omega }_{n}}} \right){{\varphi }_{n}} = - \hat {\chi }_{e}^{{nl}}{{\varphi }_{{{\text{IB}}}}}\varphi _{l}^{*} \hfill \\ {{{\hat {D}}}_{{{\text{UH}}}}}\left( {x,{{\omega }_{l}}} \right){{\varphi }_{l}} = - \hat {\chi }_{e}^{{nl}}{{\varphi }_{{{\text{IB}}}}}{{\varphi }_{n}}^{*} \hfill \\ {{{\hat {D}}}_{{{\text{IB}}}}}\left( {x,{{\omega }_{n}} - {{\omega }_{l}}} \right){{\varphi }_{{{\text{IB}}}}} = - \hat {\chi }_{e}^{{nl}}{{\varphi }_{n}}{{\varphi }_{l}}. \hfill \\ \end{gathered} \right.$$
(A1)

In weakly inhomogeneous plasma, the \({{\hat {D}}_{{{\text{UH,IB}}}}}\) ope-rators in the left-hand side of Eqs. (A1), acting on  arbitrary function F, can be represented in the follo-wing form: \({{\hat {D}}_{{{\text{UH,IB}}}}}F\) = \(\frac{1}{{{{{(2\pi )}}^{3}}}}\int_{ - \infty }^\infty {F\left( {{\mathbf{r}}{\kern 1pt} '} \right)} \) × \(\left( {\int_{ - \infty }^\infty {{{D}_{{{\text{UH,IB}}}}}\left( {{\mathbf{q}},\frac{{{\mathbf{r}} + {\mathbf{r}}{\kern 1pt} '}}{2}} \right)\exp \left( {i{\mathbf{q}}({\mathbf{r}} - {\mathbf{r}}{\kern 1pt} ')} \right)d{\mathbf{q}}} } \right)d{\mathbf{r}}{\kern 1pt} '\), where the kernel of integral operator \({{D}_{{{\text{UH}}}}} = 0\) is determined by Eq. (3), \({{D}_{{{\text{IB}}}}} = {{q}^{2}} + \chi = 0\) is the dispersion equation of the IB wave,

$$\chi = \sum\nolimits_{j = e,i} {\frac{{2\omega _{{pj}}^{2}}}{{\upsilon _{{tj}}^{2}}}} \left( {1 - \frac{{{{\omega }_{{{\text{IB}}}}}}}{{\left| {{{q}_{\xi }}} \right|{{\upsilon }_{{ti}}}}}\sum\nolimits_{m = - \infty }^\infty {Z\left( {\frac{{{{\omega }_{{{\text{IB}}}}} - m{{\omega }_{{cj}}}}}{{{{q}_{\xi }}{{\upsilon }_{{tj}}}}}} \right)} } \right. \times \left. {\exp \left( { - \frac{{q_{ \bot }^{2}\upsilon _{{tj}}^{2}}}{{2\omega _{{cj}}^{2}}}} \right){{I}_{m}}\left( {\frac{{q_{ \bot }^{2}\upsilon _{{tj}}^{2}}}{{2\omega _{{cj}}^{2}}}} \right)} \right)$$

is the linear plasma susceptibility, and \(Z\left( \xi \right)\) = \(2\exp \left( { - {{\xi }^{2}}} \right)\int_0^\xi {\exp \left( {{{t}^{2}}} \right)dt} \)\(i\sqrt \pi \exp \left( { - {{\xi }^{2}}} \right)\) is the plasma dispersion function. The operators in the right-hand side of Eqs. (A1), acting on the product of two functions U and V, have the following form:

$$\hat {\chi }_{e}^{{nl}}UV = \int\limits_{ - \infty }^\infty {U\left( {{\mathbf{r}}{\kern 1pt} '} \right)V\left( {{\mathbf{r}}{\kern 1pt} ''} \right)} \left( {\int\limits_{ - \infty }^\infty {\chi _{e}^{{nl}}\left( {{{{\mathbf{q}}}_{1}},{{{\mathbf{q}}}_{2}},{\mathbf{r}}} \right)\exp \left( {i{{{\mathbf{q}}}_{1}}({\mathbf{r}} - {\mathbf{r}}{\kern 1pt} ') + i{{{\mathbf{q}}}_{2}}({\mathbf{r}} - {\mathbf{r}}{\kern 1pt} '')} \right)d{{{\mathbf{q}}}_{1}}d{{{\mathbf{q}}}_{2}}} } \right)\frac{{d{\mathbf{r}}{\kern 1pt} 'd{\mathbf{r}}{\kern 1pt} ''}}{{{{{(2\pi )}}^{6}}}}.$$

In homogeneous plasma, \(\hat {\chi }_{e}^{{nl}}\) is the second-order nonlinear susceptibility of plasma [4345]. Let us analyze Eqs. (A1) using the approach of perturbation theory. In the first stage of perturbation procedure, we neglect the nonlinear coupling of the waves. In this case, the unperturbed solutions corresponding to the two-dimensionally localized UH waves can be determined in the same way, as in Eq. (10). The potential of the IB wave propagating mainly along the direction of plasma inhomogeneity has the following form:

$$\begin{gathered} {{\varphi }_{{{\text{IB}}}}}\left( {{\mathbf{r}},t} \right) = \frac{{{{C}_{{{\text{IB}}}}}\left( {\mathbf{r}} \right)}}{{2\sqrt {\left| {\partial {{D}_{{{\text{IB}}}}}{\text{/}}\partial {{q}_{{Ix}}}} \right|} }} \\ \times \;\exp \left( {i\int\limits_{ - \infty }^x {{{q}_{{Ix}}}\left( {x{\kern 1pt} '} \right)} dx{\kern 1pt} ' - i{{\omega }_{{{\text{IB}}}}}t} \right){\text{ + c}}{\text{.c}}{\text{.,}} \\ \end{gathered} $$
(A2)

where the envelope amplitude obeys the following reduced equation:

$$\begin{gathered} i\frac{\partial }{{\partial x}}{{C}_{{{\text{IB}}}}} = - {{C}_{n}}\left( \xi \right){{\psi }_{{{{n}_{2}}}}}\left( \zeta \right){{C}_{l}}\left( \xi \right){{\psi }_{{{{l}_{2}}}}}\left( \zeta \right) \\ \times \;\frac{{\chi _{e}^{{nl}}{{\phi }_{{{{n}_{1}}}}}\left( x \right){{\phi }_{{{{l}_{1}}}}}\left( x \right)}}{{2{{{\left| {\partial {{D}_{{{\text{IB}}}}}{\text{/}}\partial {{q}_{{Ix}}}} \right|}}^{{1/2}}}}}\exp \left( { - i\int\limits_{ - \infty }^x {{{q}_{{Ix}}}\left( {x{\kern 1pt} '} \right)} dx{\kern 1pt} '} \right). \\ \end{gathered} $$
(A3)

In Eq. (A3), we omit the terms describing the negligible effect of IB wave diffraction in the \(\zeta \times \xi \) plane. After integrating Eq. (A3), we obtain

$$\begin{gathered} {{\varphi }_{{{\text{IB}}}}}\left( {{\mathbf{r}},t} \right) = i\frac{{\chi _{e}^{{nl}}}}{4}\frac{{{{C}_{n}}\left( \xi \right){{\psi }_{{{{n}_{2}}}}}\left( \zeta \right){{C}_{l}}\left( \xi \right){{\psi }_{{{{l}_{2}}}}}\left( \zeta \right)}}{{{{{\left| {\partial {{D}_{{{\text{IB}}}}}\left( x \right){\text{/}}\partial {{q}_{{Ix}}}} \right|}}^{{1/2}}}}} \\ \times \;\int\limits_{ - \infty }^x {dx{\kern 1pt} '\frac{{{{\phi }_{{{{n}_{1}}}}}\left( {x{\kern 1pt} '} \right){{\phi }_{{{{l}_{1}}}}}\left( {x{\kern 1pt} '} \right)}}{{{{{\left| {\partial {{D}_{{{\text{IB}}}}}\left( {x{\kern 1pt} '} \right){\text{/}}\partial {{q}_{{Ix}}}} \right|}}^{{1/2}}}}}} \\ \times \;\exp \left( {i\int\limits_{x'}^x {{{q}_{{Ix}}}\left( {x{\kern 1pt} ''} \right)dx{\kern 1pt} ''\; - i{{\omega }_{{{\text{IB}}}}}t} } \right) + {\text{c}}{\text{.c}}. \\ \end{gathered} $$
(A4)

We substitute formula (A4) into the right-hand sides of the first two equations in set of Eqs. (A1) and multiply these equations by \(\phi _{{{{n}_{1}}}}^{*}\left( x \right) \cdot \phi _{{{{n}_{2}}}}^{*}\left( \zeta \right)\) and \(\phi _{{{{l}_{1}}}}^{*}\left( x \right) \cdot \phi _{{{{l}_{2}}}}^{*}\left( \zeta \right)\), respectively. Then we perform integration with respect to \(x\) and \(\zeta \) that results in the following equations:

$$\left\{ \begin{gathered} \frac{{\partial {{a}_{n}}}}{{\partial t}} + {{u}_{n}}\frac{{\partial {{a}_{n}}}}{{\partial \xi }} = - {{\nu }_{l}}\sqrt {\frac{{{{\omega }_{n}}}}{{{{\omega }_{p}}}}} {{\left| {{{a}_{l}}} \right|}^{2}}{{a}_{n}} \hfill \\ \frac{{\partial {{a}_{l}}}}{{\partial t}} - {{u}_{l}}\frac{{\partial {{a}_{l}}}}{{\partial \xi }} = \nu _{l}^{*}\sqrt {\frac{{{{\omega }_{p}}}}{{{{\omega }_{n}}}}} {{\left| {{{a}_{n}}} \right|}^{2}}{{a}_{l}}, \hfill \\ \end{gathered} \right.$$
(A5)

where \({{u}_{{n,l}}} = \left\langle {{{{\left| {\partial {{D}_{{{\text{UH}}}}}\left( x \right){\text{/}}\partial {{q}_{\xi }}} \right|}}_{{{{\omega }_{{n,l}}}}}}} \right\rangle {\text{/}}\left\langle {{{{\left| {\partial {{D}_{{{\text{UH}}}}}\left( x \right){\text{/}}\partial \omega } \right|}}_{{{{\omega }_{{n,l}}}}}}} \right\rangle \) are the group velocities of UH waves acquired due to the finite value of the parallel wave number, and

$$\begin{gathered} {{\nu }_{l}} = \frac{{4\pi {{{\left| {\chi _{e}^{{nl}}} \right|}}^{2}}}}{{\sqrt {{{\omega }_{n}}{{\omega }_{l}}} \left\langle {{{{\left| {\partial {{D}_{{{\text{UH}}}}}\left( x \right){\text{/}}\partial \omega } \right|}}_{{{{\omega }_{n}}}}}} \right\rangle \left\langle {{{{\left| {\partial {{D}_{{{\text{UH}}}}}\left( x \right){\text{/}}\partial \omega } \right|}}_{{{{\omega }_{l}}}}}} \right\rangle }} \\ \times \;\int\limits_{ - \infty }^\infty {d\zeta {{{\left| {{{\psi }_{{{{n}_{2}}}}}\left( \zeta \right)} \right|}}^{2}}{{{\left| {{{\psi }_{{{{l}_{2}}}}}\left( \zeta \right)} \right|}}^{2}}} \int\limits_{ - \infty }^\infty {dx\frac{{{{\phi }_{{{{n}_{1}}}}}\left( x \right){\kern 1pt} \text{*}{{\phi }_{{{{l}_{1}}}}}\left( x \right){\kern 1pt} \text{*}}}{{{{{\left| {\partial {{D}_{{{\text{IB}}}}}\left( x \right){\text{/}}\partial {{q}_{{Ix}}}} \right|}}^{{1/2}}}}}} \\ \times \;\int\limits_{ - \infty }^x {dx{\kern 1pt} '\frac{{{{\phi }_{{{{n}_{1}}}}}\left( {x{\kern 1pt} '} \right){{\phi }_{{{{l}_{1}}}}}\left( {x{\kern 1pt} '} \right)}}{{{{{\left| {\partial {{D}_{{{\text{IB}}}}}\left( {x{\kern 1pt} '} \right){\text{/}}\partial {{q}_{{Ix}}}} \right|}}^{{1/2}}}}}\exp \left( {i\int\limits_{x'}^x {{{q}_{{Ix}}}\left( {x{\kern 1pt} ''} \right)dx{\kern 1pt} ''} } \right)} \\ \end{gathered} $$

is the coefficient describing the secondary instability. The procedure for averaging the W arbitrary function over the modes localization region is defined as follows:

$$\left\langle {W\left( {x,\zeta } \right)} \right\rangle = \int\limits_{ - \infty }^\infty {dx{{{\left| {{{\phi }_{{{{n}_{1}}}}}\left( x \right)} \right|}}^{2}}} \int\limits_{ - \infty }^\infty {d\zeta {{{\left| {{{\psi }_{{{{n}_{2}}}}}\left( \zeta \right)} \right|}}^{2}}} W\left( {x,\zeta } \right).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, A.Y., Gusakov, E.Z. & Teplova, N.V. Effect of Two-Dimensional Plasma Inhomogeneity in Magnetic Island on Threshold of Parametric Excitation of Trapped Upper Hybrid Waves and Level of Anomalous Absorption in ECRH Experiments. Plasma Phys. Rep. 50, 35–46 (2024). https://doi.org/10.1134/S1063780X23601608

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601608

Keywords:

Navigation