Skip to main content
Log in

Robust corner detection in continuous space

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Corner detection is important in image analysis and understanding, but most existing corner detectors are sensitive to image quality, lens radial distortion, and illumination. In this paper, we propose a corner detector for robust corner detection in continuous space. We use the open string theory to construct the continuous representation of an image. Defining a corner as the intersection of two or more curve edges or straight line edges, we design a corner response function for corner determination. In detail, for each integer point, we construct multiple grayscale-parallelograms by any two directed line segments of that point, and the corner response function is based on these grayscale-parallelograms. Finally, a point with a high response value is detected as a corner. Experimental results on conventional images, wide-angle images, and fisheye images show that the proposed method obtains state-of-the-art performance on conventional images and achieves superior performance on wide-angle images and fisheye images, even under weak lighting and low-quality conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.ee.surrey.ac.uk/CVSSP/demos/corners

  2. code: https://www.cs.ubc.ca/~lowe/keypoints/

  3. code: https://ww2.mathworks.cn/matlabcentral/fileexchange/7652-a-corner-detector-based-on-global-and-local-curvature-properties.

References

  1. Zhou, C., Xing, J., Liu, H.: Multiple properties-based moving object detection algorithm. Korea Inf. Process. Soc. 17(1), 124–135 (2021)

    Article  Google Scholar 

  2. Wang, S., Zhu, M., Hu, Y., Li, D., Yuan, F., Yu, J.: Accurate detection and localization of curved checkerboard-like marker based on quadratic form. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)

    Article  Google Scholar 

  3. Dong, Y., Pei, M., Wu, Y., Jia, Y.: Stitching images from a conventional camera and a fisheye camera based on nonrigid warping. Multimed. Tools Appl. 81(13), 18417–18435 (2022)

    Article  Google Scholar 

  4. Dong, Y., Pei, M., Zhang, L., Xu, B., Jia, Y.: Stitching videos from a fisheye lens camera and a wide-angle lens camera for telepresence robots. Int. J. Soc. Robot. 14, 733–745 (2022)

    Article  Google Scholar 

  5. Harris, C.G., Stephens, M.J.: A combined corner and edge detector. In: Alvey Vision Conference (1988)

  6. Jian, C., Xiang, X., Zhang, M.: Mobile terminal gesture recognition based on improved fast corner detection. IET Image Process. 13, 991–997 (2019)

    Article  Google Scholar 

  7. Liu, J., Pei, H.: An improved corner detector based on the skeleton for texture image. Pattern Recognit Image Anal. 31, 221–227 (2021)

    Article  Google Scholar 

  8. Zhang, X., Qu, Y., Yang, D., Wang, H., Kymer, J.: Laplacian scale-space behavior of planar curve corners. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2207–2217 (2015)

    Article  Google Scholar 

  9. Jing, J., Zhang, W., Gao, T., Sun, Sun: Image feature information extraction for interest point detection: a comprehensive review. IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 4694–4712 (2023). https://doi.org/10.1109/TPAMI.2022.3201185

    Article  Google Scholar 

  10. Zhang, W., Sun, C., Gao, Y.: Image intensity variation information for interest point detection. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 9883–9894 (2023). https://doi.org/10.1109/TPAMI.2023.3240129

    Article  Google Scholar 

  11. Jia, Y., Dong, Y., Xu, B., Sun, C.: TIUI: touching live video for telepresence operation. IEEE Trans. Mobile Comput. 22, 2458–2472 (2021)

    Article  Google Scholar 

  12. Mehrotra, R., Nichani, S., Ranganathan, N.: Corner detection. Pattern Recognit. 23(11), 1223–1233 (1990)

    Article  Google Scholar 

  13. Moravec, H.P.: Visual mapping by a robot rover. In Proceedings of the 6th international joint conference on Artificial intelligence-Volume 1, pp 598–600. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (1979)

  14. Shi, J., Tomasi: Good features to track. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994). 10.1109/CVPR.1994.323794

  15. Kenney, C.S., Zuliani, M., Manjunath, B.S.: An axiomatic approach to corner detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 191–1971 (2005). 10.1109/CVPR.2005.68

  16. Low, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  17. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2, pp. 1508–15152 (2005)

  18. Smith, S.M., Brady, J.M.: SUSAN-A new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  19. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision - ECCV 2006, pp. 404–417. Springer, Berlin (2006)

    Chapter  Google Scholar 

  20. Zhang, W., Sun, C.: Corner detection using multi-directional structure tensor with multiple scales. Int. J. Comput. Vis. 128, 438–459 (2019)

    Article  MathSciNet  Google Scholar 

  21. Jin, D., Zhang, S., Huo, X., Yang, F.: A corner detection method for conventional light field camera by jointly using line-features. IEEE Access 8, 75884–75893 (2020)

    Article  Google Scholar 

  22. Pan, X., Zhu, J., Yu, H., Chen, L., Liu, Y., Li, L.: Robust corner detection with fractional calculus for magnetic resonance imaging. Biomed. Signal Process. Control 63(1), 102–112 (2021)

    Google Scholar 

  23. Liu, Q., Zhang, R.Q., Wang, F., Ding, C., Hu, D.-x: Research on corner detection algorithm based on the long depth of field binocular camera with wavefront coding. Optik 249, 168306 (2021)

    Article  Google Scholar 

  24. Jiang, Y., Li, X., Liu, Y., Wang, W., Du, J.: 3D interest point detection using balance-distortion oriented selection. Vis. Comput. 39, 733–747 (2023)

    Article  Google Scholar 

  25. Deriche, R., Giraudon, G.: A computational approach for corner and vertex detection. Int. J. Comput. Vis. 10, 101–124 (1993)

    Article  Google Scholar 

  26. Ruzon, M.A., Tomasi, C.: Edge, junction, and corner detection using color distributions. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1281–1295 (2001)

    Article  Google Scholar 

  27. Sinzinger, E.D.: A model-based approach to junction detection using radial energy. Pattern Recognit. 41(2), 494–505 (2008)

    Article  Google Scholar 

  28. Rosten, Edward: Porter, reid: faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    Article  Google Scholar 

  29. Elias, R., Laganiere, R.: JUDOCA: junction detection operator based on circumferential anchors. IEEE Trans. Image Process. 21(4), 2109–2118 (2012)

    Article  MathSciNet  Google Scholar 

  30. Xia, G.S., Delon, J., Gousseau, Y.: Accurate junction detection and characterization in natural images. Int. J. Comput. Visi. 106(1), 31–56 (2014)

    Article  MathSciNet  Google Scholar 

  31. Pham, T.A., Delalandre, M., Barrat, S., Ramel, J.: Accurate junction detection and characterization in line-drawing images. Pattern Recognit. 47(1), 282–295 (2014)

    Article  Google Scholar 

  32. Wan, C., Cao, J., Wei, X., Huang, J., Chen, Z., Xu, D., Qiu, F.: IPCS: an improved corner detector with intensity, pattern, curvature, and scale. Vis. Comput. 39, 2499–2513 (2022)

    Article  Google Scholar 

  33. Zhong, B., Liao, W.: Direct curvature scale space: theory and corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 508–12 (2007)

    Article  Google Scholar 

  34. He, X.C., Yung, N.H.C.: Corner detector based on global and local curvature properties. Opt. Eng. 47(5), 057008 (2008)

    Article  Google Scholar 

  35. Zhang, W.C., Wang, F.P., Lei, Z., Zhou, Z.F.: Corner detection using gabor filters. IET Image Proc. 8(11), 639–646 (2014)

    Article  Google Scholar 

  36. Zhang, W.C., Shui, P.L.: Contour-based corner detection via angle difference of principal directions of anisotropic Gaussian directional derivatives. Pattern Recognit. J. Pattern Recognit. Soc. 48(9), 2785–2797 (2015)

    Article  Google Scholar 

  37. Chen, S., Meng, H., Zhang, C., Liu, C.: A KD curvature based corner detector. Neurocomputing 173(JAN.15PT.2), 434–441 (2016)

    Article  Google Scholar 

  38. Zhang, W., Sun, C., Breckon, T., Alshammari, N.: Discrete curvature representations for noise robust image corner detection. IEEE Trans. Image Process. 28(9), 4444–4459 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zhang, W., Sun, C.: Corner detection using second-order generalized Gaussian directional derivative representations. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1213–1224 (2021)

    Article  Google Scholar 

  40. Huo, Z., Zhang, Y., Liu, H., Wang, J., Liu, X., Zhang, J.: Improved covariant local feature detector. Pattern Recognit. Lett. 135, 1–7 (2020). https://doi.org/10.1016/j.patrec.2020.03.027

    Article  Google Scholar 

  41. Zhao, S., Gong, M., Zhao, H., Zhang, J., Tao, D.: Deep corner. Int. J. Comput. Vis. 131, 2908–2932 (2023). https://doi.org/10.1007/s11263-023-01837-3

    Article  Google Scholar 

  42. Liu, C., Liu, H., Zhang, L., Zeng, H., Luo, L., Fan, B.: Learning task-aligned local features for visual localization. IEEE Robot. Autom. Lett. 8(6), 3366–3373 (2023). https://doi.org/10.1109/LRA.2023.3268015

    Article  Google Scholar 

  43. Fan, B., Yang, Y., Feng, W., Wu, F., Lu, J., Liu, H.: Seeing through darkness: visual localization at night via weakly supervised learning of domain invariant features. IEEE Trans. Multimed. 25, 1713–1726 (2023). https://doi.org/10.1109/TMM.2022.3154165

    Article  Google Scholar 

  44. DeTone, M.T.D., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2018)

  45. Santellani, E., Sormann, C., Rossi, M., Kuhn, A., Fraundorfer, F.: S-trek: sequential translation and rotation equivariant keypoints for local feature extraction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9728–9737 (2023)

  46. Fan, B., Kong, Q., Wang, X., Wang, Z., Xiang, S., Pan, C., Fua, P.: A performance evaluation of local features for image-based 3d reconstruction. IEEE Trans. Image Process. 28(10), 4774–4789 (2019). https://doi.org/10.1109/TIP.2019.2909640

    Article  MathSciNet  Google Scholar 

  47. Castle, R.O., Gawley, D.J., Klein, G., Murray, D.W.: Towards simultaneous recognition, localization and mapping for hand-held and wearable cameras. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 4102–4107 (2007)

  48. Hansen, P., Corke, P., Boles, W., Daniilidis, K.: Scale-invariant features on the sphere. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007. (2007)

  49. Lourenco, M., Barreto, J.P., Vasconcelos, F.: sRD-SIFT: keypoint detection and matching in images with radial distortion. IEEE Trans. Rob. 28(3), 752–760 (2012)

    Article  Google Scholar 

  50. Burschka, D., Ming, L., Ishii, M., Taylor, R.H., Hager, G.D.: Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery. Med. Image Anal. 9(5), 413–426 (2005)

    Article  Google Scholar 

  51. Lourenço, M., Barreto, J.P., Malti, A.: Feature detection and matching in images with radial distortion. In: 2010 IEEE International Conference on Robotics and Automation, pp. 1028–1034 (2010)

  52. Lou, L., Dan, W., Chen, J.: A threshold selection method based on edge preserving. In: International Symposium on Multispectral Image Processing and Pattern Recognition (2015)

  53. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  54. Awrangjeb, M., Lu, G.: Robust image corner detection based on the chord-to-point distance accumulation technique. IEEE Trans. Multimed. 10(6), 1059–1072 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctoral Fund of Guangxi University of Science and Technology (No. 20Z39) and the Project for Enhancing Young and Middle-aged Teacher’s Research Basis Ability in Colleges of Guangxi (No. 2024KY0358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmei Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Dong, Y., Liu, Q. et al. Robust corner detection in continuous space. Vis Comput (2024). https://doi.org/10.1007/s00371-024-03362-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-024-03362-x

Keywords

Navigation