Skip to main content
Log in

Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approaches

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

DNA methyl transferases (DNMTs) are one of the crucial epigenetic modulators associated with a wide variety of cancer conditions. Among the DNMT isoforms, DNMT1 is correlated with bladder, pancreatic, and breast cancer, as well as acute myeloid leukemia and esophagus squamous cell carcinoma. Therefore, the inhibition of DNMT1 could be an attractive target for combating cancers and other metabolic disorders. The disadvantages of the existing nucleoside and non-nucleoside DNMT1 inhibitors are the main motive for the discovery of novel promising inhibitors. Here, pharmacophore modeling, 3D-QSAR, and e-pharmacophore modeling of DNMT1 inhibitors were performed for the large fragment database screening. The resulting fragments with high dock scores were combined into molecules. The current study revealed several constitutional pharmacophoric features that can be essential for selective DNMT1 inhibition. The fragment docking and virtual screening identified 10 final hit molecules that exhibited good binding affinities in terms of docking score, binding free energies, and acceptable ADME properties. Also, the modified lead molecules (GL1b and GL2b) designed in this study showed effective binding with DNMT1 confirmed by their docking scores, binding free energies, 3D-QSAR predicted activities and acceptable drug-like properties. The MD simulation studies also suggested that leads (GL1b and GL2b) formed stable complexes with DNMT1. Therefore, the findings of this study can provide effective information for the development/identification of novel DNMT1 inhibitors as effective anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463. https://doi.org/10.1038/nature02625

    Article  CAS  PubMed  Google Scholar 

  2. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428. https://doi.org/10.1038/nrg816

    Article  CAS  PubMed  Google Scholar 

  3. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacol 38(1):23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  Google Scholar 

  4. Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Structure and function of mammalian DNA methyltransferases. ChemBioChem 12(2):206–222. https://doi.org/10.1002/cbic.201000195

    Article  CAS  PubMed  Google Scholar 

  5. Hermann A, Goyal R, Jeltsch A (2004) The DNMT1 DNA-(Cytosine-C5)-Methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279(46):48350–48359. https://doi.org/10.1074/jbc.M403427200

    Article  CAS  PubMed  Google Scholar 

  6. Jin B, Robertson KD (2013) DNA methyltransferases, DNA damage repair, and cancer, In: Karpf AR (ed) Epigenetic alterations in oncogenesis, Springer, New York, vol 754, pp 3–29. https://doi.org/10.1007/978-1-4419-9967-2_1

  7. Subramaniam D, Thombre R, Dhar A, Anant S (2014) DNA methyltransferases: A novel target for prevention and therapy. Front Oncol 4:80. https://doi.org/10.3389/fonc.2014.00080

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jeltsch A (2006) Molecular enzymology of mammalian DNA methyltransferases. In: Doerfler W, Böhm P (eds) DNA methylation: basic mechanisms, Springer, Berlin, vol 301, pp 203–225. https://doi.org/10.1007/3-540-31390-7_7.

  9. Zhang W, Xu J (2017) DNA methyltransferases and their roles in tumorigenesis. Biomark Res 20(5):1. https://doi.org/10.1186/s40364-017-0081-z

    Article  Google Scholar 

  10. Phanus-Umporn C, Prachayasittikul V, Nantasenamat C, Prachayasittikul S, Prachayasittikul V (2020) QSAR-driven rational design of novel DNA methyltransferase 1 inhibitors. EXCLI J. 19:458–475

    PubMed  PubMed Central  Google Scholar 

  11. Medina-Franco JL, Yoo J (2013) Docking of a novel DNA methyltransferase inhibitor identified from high-throughput screening: insights to unveil inhibitors in chemical databases. Mol Divers 17(2):337–344. https://doi.org/10.1007/s11030-013-9428-z

    Article  CAS  PubMed  Google Scholar 

  12. Robertson KD (2001) DNA methylation, methyltransferases, and cancer. Oncogene 20(24):3139–3155. https://doi.org/10.1038/sj.onc.1204341

    Article  CAS  PubMed  Google Scholar 

  13. Sukur G, Uysal F, Cinar O (2023) High-fat diet induced obesity alters dnmt1 and dnmt3a levels and global DNA methylation in mouse ovary and testis. Histochem Cell Biol 159(4):339–352. https://doi.org/10.1007/s00418-022-02173-2

    Article  CAS  PubMed  Google Scholar 

  14. AmruthMaroju P, NagaMohan K (2022) DNA methyltransferases and schizophrenia: current status. In: Fukao K (ed) Psychosis - phenomenology, psychopathology and pathophysiology, IntechOpen, 2022. https://doi.org/10.5772/intechopen.98567.

  15. Wong KK (2021) DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol 72:198–213. https://doi.org/10.1016/j.semcancer.2020.05.010

    Article  CAS  PubMed  Google Scholar 

  16. Dhawan D, Ramos-Vara JA, Hahn NM, Waddell J, Olbricht GR, Zheng R, Stewart JC, Knapp DW (2013) DNMT1: an emerging target in the treatment of invasive urinary bladder cancer. Semin Orig Investig 31(8):1761–1769. https://doi.org/10.1016/j.urolonc.2012.03.015

    Article  CAS  Google Scholar 

  17. Wong KK (2020) DNMT1 as a therapeutic target in pancreatic cancer: mechanisms and clinical implications. Cell Oncol 43(5):779–792. https://doi.org/10.1007/s13402-020-00526-4

    Article  CAS  Google Scholar 

  18. Li M, Zhang D (2022) DNA methyltransferase-1 in acute myeloid leukaemia: beyond the maintenance of DNA methylation. Ann Med 54(1):2011–2023. https://doi.org/10.1080/07853890.2022.2099578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao SL, Zhu ST, Hao X, Li P, Zhang ZT (2011) Effects of DNA methyltransferase 1 inhibition on esophageal squamous cell carcinoma: the role of DNMT1 in ESCC. Diseas Esophagus 24(8):601–610. https://doi.org/10.1111/j.1442-2050.2011.01199.x

    Article  Google Scholar 

  20. Dong E, Ruzicka WB, Grayson DR, Guidotti A (2015) DNA-Methyltransferase1 (DNMT1) binding to CpG Rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients. Schizophrenia Res 167(1–3):35–41. https://doi.org/10.1016/j.schres.2014.10.030

    Article  CAS  Google Scholar 

  21. Chen S, Wang Y, Zhou W, Li S, Peng J, Shi Z, Hu J, Liu YC, Ding H, Lin Y, Li L, Cheng S, Liu J, Lu T, Jiang H, Liu B, Zheng M, Luo C (2014) Identifying novel selective non-nucleoside DNA methyltransferase 1 Inhibitors through docking-based virtual screening. J Med Chem 57(21):9028–9041. https://doi.org/10.1021/jm501134e

    Article  CAS  PubMed  Google Scholar 

  22. Hu C, Liu X, Zeng Y, Liu J, Wu F (2021) DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clin Epigenet 13(1):166. https://doi.org/10.1186/s13148-021-01154-x

    Article  CAS  Google Scholar 

  23. Gnyszka A, Jastrzebski Z, Flis S (2013) DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res 33(20):2989–2996. https://doi.org/10.1093/jnci/dji311

    Article  CAS  PubMed  Google Scholar 

  24. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11(19 Pt 1):7033–7041. https://doi.org/10.1158/1078-0432.CCR-05-0406

    Article  CAS  PubMed  Google Scholar 

  25. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63(22):7563–7570

    CAS  PubMed  Google Scholar 

  26. Fagan RL, Cryderman DE, Kopelovich L, Wallrath LL, Brenner C (2013) Laccaic acid a is a direct, dna-competitive inhibitor of DNA methyltransferase 1. J Biol Chem 288(33):23858–23867. https://doi.org/10.1074/jbc.M113.480517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zambrano P, Segura-Pacheco B, Perez-Cardenas E, Cetina L, Revilla-Vazquez A, Taja-Chayeb L, Chavez-Blanco A, Angeles E, Cabrera G, Sandoval K, Trejo-Becerril C, Chanona-Vilchis J, Duenas-González A (2005) A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer 5:44. https://doi.org/10.1186/1471-2407-5-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Villar-Garea A, Fraga MF, Espada J, Esteller M (2003) Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63(16):4984–4989

    CAS  PubMed  Google Scholar 

  29. Cornacchia E, Golbus J, Maybaum J, Strahler J, Hanash S, Richardson B (1988) Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol 140(7):2197–2200

    Article  CAS  PubMed  Google Scholar 

  30. Siedlecki P, Boy RG, Musch T, Brueckner B, Suhai S, Lyko F, Zielenkiewicz P (2006) Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem 49(2):678–683. https://doi.org/10.1021/jm050844z

    Article  CAS  PubMed  Google Scholar 

  31. Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F (2005) Epigenetic Reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65(14):6305–6311. https://doi.org/10.1158/0008-5472.CAN-04-2957

    Article  CAS  PubMed  Google Scholar 

  32. Datta J, Ghoshal K, Denny WA, Gamage SA, Brooke DG, Phiasivongsa P, Redkar S, Jacob ST (2009) A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 69(10):4277–4285. https://doi.org/10.1158/0008-5472.CAN-08-3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gros C, Fahy J, Halby L, Dufau I, Erdmann A, Gregoire JM, Ausseil F, Vispé S, Arimondo PB (2012) DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94(11):2280–2296. https://doi.org/10.1016/j.biochi.2012.07.025

    Article  CAS  PubMed  Google Scholar 

  34. Singh N, Dueñas-González A, Lyko F, Medina-Franco JL (2009) Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem 4(5):792–799. https://doi.org/10.1002/cmdc.200900017

    Article  CAS  PubMed  Google Scholar 

  35. Krishna S, Shukla S, Lakra AD, Meeran SM, Siddiqi MI (2017) Identification of potent inhibitors of DNA methyltransferase 1 (DNMT1) through a pharmacophore-based virtual screening approach. J Mol Graph Model 75:174–188. https://doi.org/10.1016/j.jmgm.2017.05.014

    Article  CAS  PubMed  Google Scholar 

  36. Kuck D, Singh N, Lyko F, Medina-Franco JL (2010) Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem 18(2):822–829. https://doi.org/10.1016/j.bmc.2009.11.050

    Article  CAS  PubMed  Google Scholar 

  37. Erlanson DA, McDowell RS, O’Brien T (2004) Fragment-based drug discovery. J Med Chem 47(14):3463–3482. https://doi.org/10.1021/jm040031v

    Article  CAS  PubMed  Google Scholar 

  38. Coronado-Posada N, Olivero-Verbel J (2019) In silico evaluation of pesticides as potential modulators of human DNA methyltransferases. SAR QSAR Environ Res 30(12):865–878. https://doi.org/10.1080/1062936X.2019.1666165

    Article  CAS  PubMed  Google Scholar 

  39. Maldonado-Rojas W, Olivero-Verbel J, Marrero-Ponce Y (2015) Computational fishing of new DNA methyltransferase inhibitors from natural products. J Mol Graph Model 60:43–54. https://doi.org/10.1016/j.jmgm.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  40. Manoharan P, Ghoshal N (2018) Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads. J Biomol Struct Dyn 36(7):1878–1892. https://doi.org/10.1080/07391102.2017.1337590

    Article  CAS  PubMed  Google Scholar 

  41. Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nature Chem 1(3):187–192. https://doi.org/10.1038/nchem.217

    Article  CAS  Google Scholar 

  42. Maestro Version 13.0, Schrodinger, LLC, New York, NY, 2021–4.

  43. Asgatay S, Champion C, Marloie G, Drujon T, Senamaud-Beaufort C, Ceccaldi A, Erdmann A, Rajavelu A, Schambel P, Jeltsch A, Lequin O, Karoyan P, Arimondo PB, Guianvarc’h D (2014) Synthesis and evaluation of analogues of N -Phthaloyl- l -Tryptophan (RG108) as inhibitors of DNA methyltransferase 1. J Med Chem 57(2):421–434. https://doi.org/10.1021/jm401419p

    Article  CAS  PubMed  Google Scholar 

  44. Valente S, Liu Y, Schnekenburger M, Zwergel C, Cosconati S, Gros C, Tardugno M, Labella D, Florean C, Minden S, Hashimoto H, Chang Y, Zhang X, Kirsch G, Novellino E, Arimondo PB, Miele E, Ferretti E, Gulino A, Diederich M, Cheng X, Mai A (2014) Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem 57(3):701–713. https://doi.org/10.1021/jm4012627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saavedra OM, Isakovic L, Llewellyn DB, Zhan L, Bernstein N, Claridge S, Raeppel F, Vaisburg A, Elowe N, Petschner AJ, Rahil J, Beaulieu N, MacLeod AR, Delorme D, Besterman JM, Wahhab A (2009) SAR around (l)-S-adenosyl-l-homocysteine, an inhibitor of human DNA methyltransferase (DNMT) enzymes. Bioorg Med Chem Lett 19(10):2747–2751. https://doi.org/10.1016/j.bmcl.2009.03.113

    Article  CAS  PubMed  Google Scholar 

  46. Isakovic L, Saavedra OM, Llewellyn DB, Claridge S, Zhan L, Bernstein N, Vaisburg A, Elowe N, Petschner AJ, Rahil J, Beaulieu N, Gauthier F, MacLeod AR, Delorme D, Besterman JM, Wahhab A (2009) Constrained (l-)-S-adenosyl-l-homocysteine (SAH) analogues as DNA methyltransferase inhibitors. Bioorg Med Chem Lett 19(10):2742–2746. https://doi.org/10.1016/j.bmcl.2009.03.132

    Article  CAS  PubMed  Google Scholar 

  47. Li E, Wang K, Zhang B, Guo S, Xiao S, Pan Q, Wang X, Chen W, Wu Y, Xu H, Kong X, Luo C, Chen S, Liu B (2022) Design, synthesis, and biological evaluation of novel carbazole derivatives as potent DNMT1 inhibitors with reasonable PK properties. J Enz Inhib Med Chem 37(1):1537–1555. https://doi.org/10.1080/14756366.2022.2079640

    Article  CAS  Google Scholar 

  48. Castellano S, Kuck D, Viviano M, Yoo J, López-Vallejo F, Conti P, Tamborini L, Pinto A, Medina-Franco JL, Sbardella G (2011) Synthesis and biochemical evaluation of Δ2 -isoxazoline derivatives as dna methyltransferase 1 inhibitors. J Med Chem 54(21):7663–7677. https://doi.org/10.1021/jm2010404

    Article  CAS  PubMed  Google Scholar 

  49. Kilgore JA, Du X, Melito L, Wei S, Wang C, Chin HG, Posner B, Pradhan S, Ready JM, Williams NS (2013) Identification of DNMT1 selective antagonists using a novel scintillation proximity assay. J Biol Chem 288(27):19673–19684. https://doi.org/10.1074/jbc.M112.443895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Medina-Franco JL, López-López E, Martínez-Fernández L (2022) 7-Aminoalkoxy-quinazolines from epigenetic focused libraries are potent and selective inhibitors of DNA methyltransferase 1. Molecules 27(9):2892. https://doi.org/10.3390/molecules27092892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoo J, Kim JH, Robertson KD, Medina-Franco JL (2012) Molecular modeling of inhibitors of human DNA methyltransferase with a crystal structure. In: Advances in protein chemistry and structural biology; Elsevier, vol 87, pp 219–247. https://doi.org/10.1016/B978-0-12-398312-1.00008-1.

  52. Yoo J, Medina-Franco JL (2012) Trimethylaurintricarboxylic acid inhibits human DNA methyltransferase 1: insights from enzymatic and molecular modeling studies. J Mol Model 18(4):1583–1589. https://doi.org/10.1007/s00894-011-1191-4

    Article  CAS  PubMed  Google Scholar 

  53. Medina-Franco JL, López-Vallejo F, Kuck D, Lyko F (2011) Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers 15(2):293–304. https://doi.org/10.1007/s11030-010-9262-5

    Article  CAS  PubMed  Google Scholar 

  54. Gilmartin AG, Groy A, Gore ER, Atkins C, Long ER, Montoute MN, Wu Z, Halsey W, McNulty DE, Ennulat D, Rueda L, Pappalardi M, Kruger RG, McCabe MT, Raoof A, Butlin R, Stowell A, Cockerill M, Waddell I, Ogilvie D, Luengo J, Jordan A, Benowitz AB (2020) In vitro and in vivo induction of fetal hemoglobin with a reversible and selective DNMT1 inhibitor. Haematologica 106(7):1979–1987. https://doi.org/10.3324/haematol.2020.248658

    Article  CAS  PubMed Central  Google Scholar 

  55. Portilho NA, Deepak D, Hossain I, Sirois J, Moraes C, Pastor WA (2021) The DNMT1 inhibitor GSK-3484862 mediates global demethylation in murine embryonic stem cells. Epigenet Chromat 14(1):56. https://doi.org/10.1186/s13072-021-00429-0

    Article  CAS  Google Scholar 

  56. Pappalardi MB, Keenan K, Cockerill M, Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J, Steidel M, Chapman P, Groy A, Wiseman AK, McHugh CF, Campobasso N, Graves AP, Fairweather E, Werner T, Raoof A, Butlin RJ, Rueda L, Horton JR, Fosbenner DT, Zhang C, Handler JL, Muliaditan M, Mebrahtu M, Jaworski JP, McNulty DE, Burt C, Eberl HC, Taylor AN, Ho T, Merrihew S, Foley SW, Rutkowska A, Li M, Romeril SP, Goldberg K, Zhang X, Kershaw CS, Bantscheff M, Jurewicz AJ, Minthorn E, Grandi P, Patel M, Benowitz AB, Mohammad HP, Gilmartin AG, Prinjha RK, Ogilvie D, Carpenter C, Heerding D, Baylin SB, Jones PA, Cheng X, King BW, Luengo JI, Jordan AM, Waddell I, Kruger RG, McCabe MT (2021) Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat Cancer 2(10):1002–1017. https://doi.org/10.1038/s43018-021-00249-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S, Yu J, Li P, Lin J, Fuchs JR, Marcucci G, Li C, Chan KK (2009) Curcumin is a potent dna hypomethylation agent. Bioorg Med Chem Lett 19(3):706–709. https://doi.org/10.1016/j.bmcl.2008.12.041

    Article  CAS  PubMed  Google Scholar 

  58. 2D Sketcher Tool, Schrodinger, LLC, New York, NY, 2021–4.

  59. LigPrep 13.0, Schrodinger, LLC, New York, NY, 2021–4.

  60. Mahajan P, Suri N, Mehra R, Gupta M, Kumar A, Singh SK, Nargotra A (2017) Discovery of novel small molecule EGFR inhibitory leads by structure and ligand-based virtual screening. Med Chem Res 26:74–92. https://doi.org/10.1007/s00044-016-1728-2

    Article  CAS  Google Scholar 

  61. Jain SV, Sonawane LV, Patil RR, Bari SB (2012) Pharmacophore modeling of some novel indole β-diketo acid and coumarin-based derivatives as HIV integrase inhibitors. Med Chem Res 21:165–173. https://doi.org/10.1007/s00044-010-9520-1

    Article  CAS  Google Scholar 

  62. Banerjee S, Baidya SK, Adhikari N, Jha T (2022) A comparative quantitative structural assessment of benzothiazine-derived HDAC8 inhibitors by predictive ligand-based drug designing approaches. SAR QSAR Environ Res 33(12):987–1011. https://doi.org/10.1080/1062936X.2022.2155241. (Epub 2022 Dec 19 PMID: 36533308)

    Article  CAS  PubMed  Google Scholar 

  63. PHASE Version 13.0, Schrodinger, LLC, New York, NY, 2021–4.

  64. Frimayanti N, Lee VS, Zain SM, Wahab HA, Rahman NA (2014) 2D, 3D-QSAR, and pharmacophore studies on thiazolidine-4-carboxylic acid derivatives as neuraminidase inhibitors in H3N2 influenza virus. Med Chem Res 23:1447–1453. https://doi.org/10.1007/s00044-013-0750-x

    Article  CAS  Google Scholar 

  65. Suryanarayanan V, Sudha A, Rajamanikandan S, Vanajothi R, Srinivasan P (2013) Atom-based 3D QSAR studies on novel N-β-d-Xylosylindole derivatives as SGLT2 inhibitors. Med Chem Res 22:615–624. https://doi.org/10.1007/s00044-012-0053-7

    Article  CAS  Google Scholar 

  66. Lanka G, Begum D, Banerjee S, Adhikari N, Yogeeswari P, Ghosh B (2023) Pharmacophore-based virtual screening 3D QSAR, Docking, ADMET, and MD simulation studies: an in silico perspective for the identification of new potential HDAC3 inhibitors. Comput Biol Med 166:107481. https://doi.org/10.1016/j.compbiomed.2023.107481

    Article  CAS  PubMed  Google Scholar 

  67. Reddy KK, Singh SK, Tripathi SK, Selvaraj C, Suryanarayanan V (2013) Shape and pharmacophore-based virtual screening to identify potential cytochrome P450 sterol 14α-Demethylase inhibitors. J Recept Signal Transduc 33(4):234–243. https://doi.org/10.3109/10799893.2013.789912

    Article  CAS  Google Scholar 

  68. Panwar U, Singh SK (2021) In silico virtual screening of potent inhibitor to hamper the interaction between HIV-1 integrase and LEDGF/P75 interaction using e-pharmacophore modeling, molecular docking, and dynamics simulations. Comput Biol Chem 93:107509. https://doi.org/10.1016/j.compbiolchem.2021.107509

    Article  CAS  PubMed  Google Scholar 

  69. Enamine database, https://enamine.net/compound-collections/real-compounds/real-database

  70. FCH Database, http://fchgroup.net/.

  71. Chemdiv Database, https://www.chemdiv.scom/.

  72. Life Chemicals Database, https://lifechemicals.com/.

  73. Asinex Database, https://www.asinex.com/.

  74. Protein Preparation Wizard; Epik, Schrodinger, LLC, New York, NY, 2022–1.

  75. Receptor Grid Generation Panel 13.0, Schrodinger, LLC, New York, NY, 2022–1.

  76. R.A. Laskowski RA, M.B. Swindells MB, (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786. https://doi.org/10.1021/ci200227u

    Article  CAS  Google Scholar 

  77. Song J, Rechkoblit O, Bestor TH, Patel DJ (2011) Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331(6020):1036–1040. https://doi.org/10.1126/science.1195380

    Article  CAS  PubMed  Google Scholar 

  78. Glide Version 13.0, Schrodinger, LLC, New York, NY, 2021–4.

  79. Elekofehinti OO, Iwaloye O, Olawale F, Chukwuemeka PO, Folorunso IM (2021) Newly designed compounds from scaffolds of known actives as inhibitors of survivin: computational analysis from the perspective of fragment-based drug design. In Silico Pharmacol 9(1):47. https://doi.org/10.1007/s40203-021-00108-8

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lanka G, Bathula R, Dasari M, Nakkala S, Bhargavi M, Somadi G, Potlapally SR (2019) Structure-based identification of potential novel inhibitors targeting FAM3B (PANDER) causing type 2 diabetes mellitus through virtual screening. J Receptor Signal Transduc 39(3):253–263. https://doi.org/10.1080/10799893.2019.1660897

    Article  CAS  Google Scholar 

  81. Lanka G, Bhargavi M, Bathula R, Potlapally SR (2022) Targeting tribbles homolog 3 (TRIB3) protein against type 2 diabetes for the identification of potential inhibitors by in silico screening. J Ind Chem Soc 99:100531. https://doi.org/10.1016/j.jics.2022.100531

    Article  CAS  Google Scholar 

  82. Lanka G, Bathula R, Ghosh B, Potlapally SR (2023) Identification of potential antiviral lead inhibitors against SARS-CoV-2 Main protease: structure-guided virtual screening, docking, ADME, and MD simulation based approach. Artificial Intell Chem 1:100015. https://doi.org/10.1016/j.aichem.2023.100015

    Article  Google Scholar 

  83. Prime Version 13.0, Schrodinger, LLC, New York, NY, 2022–1.

  84. QikProp 13.0, Schrodinger, LLC, New York, NY, 2022–1.

  85. Desmond 13.1, Schrodinger, LLC, New York, NY, 2022–1.

  86. Daina A, Michielin O, Zoete V (2017) SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present work is supported by BUILDER grant from the Department of Biotechnology (DBT), India to BITS-Pilani, Hyderabad Campus (Grant No. BT/INF/22/SP42551/2021 dated 22.07.2021). Author L. Goverdhan sincerely thanks DBT-INDIA for the financial assistance as Research Associate-II under the DBT-BUILDER project. The authors are thankful to the High-Performance Computing (HPC) facility at BITS-Hyderabad Campus for providing access to run Schrodinger Software. The authors are thankful to Dr. K. Koushik, Senior Scientist, Schrodinger for his help and support during the execution of the project. The authors also acknowledge the Department of Pharmacy, BITS-Pilani, Hyderabad Campus and Department of Pharmaceutical Technology, Jadavpur University for providing research facilities to carry out the present work.

Author information

Authors and Affiliations

Authors

Contributions

GL contributed toward data curation, pharmacophore mapping, molecular docking, theoretical studies, data analysis, and manuscript drafting and writing; SB contributed toward data analysis, MD Simulation, and manuscript writing and reviewing; NA contributed toward conceptualization, data analysis, writing, editing, reviewing, overall organization of the manuscript, and supervision; BG contributed toward conceptualization, data analysis, writing, editing, reviewing, overall organization of the manuscript, and supervision.

Corresponding author

Correspondence to Balaram Ghosh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11740 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanka, G., Banerjee, S., Adhikari, N. et al. Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approaches. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10837-5

Keywords

Navigation