Skip to main content
Log in

Application and Mechanism of Lithium-ion Sieves in the Recovery of Lithium-Containing Wastewater: a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

As a crucial component of modern energy, lithium is becoming ever more vital. As a result, lithium-ion-containing wastewater is being created in huge quantities, causing resource loss and environmental damage that must be effectively treated. Adsorption techniques are popular for lithium extraction and recovery due to their benefits of low energy usage, straightforward procedures and excellent recycling. The lithium-ion sieves (LISs) adsorption technique, which has the qualities of high lithium selectivity and adsorption capacity, low energy consumption, environmental protection and safety, is now regarded as the most promising lithium extraction technology. LISs composite forming technology (such as granulation, foaming, fiber forming, film forming and magnetization) and the adsorption technique, specifically the LISs adsorption mechanism, are discussed in this review. The effectiveness of extracting lithium from lithium-containing solutions using LISs adsorbents is reviewed and the difficulties of recovering lithium resources by LISs are presented, thereby offering a guide for their use in treating wastewater containing lithium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Chen, C.-W., Chen, P.-A., Wei, C.-J., et al. (2017). Lithium recovery with LiTi2O4 ion-sieves. Marine Pollution Bulletin, 124(2), 1106–1110.

    Article  CAS  Google Scholar 

  • Chen, Y., Zhao, H., Xia, M., et al. (2023). Insights into lithium adsorption by coal-bearing strata kaolinite. Frontiers of Earth Science, 2023(17), 251261.

    Google Scholar 

  • Chun, B., Min, G., Huifang, Z., et al. (2017). The research progress of extracting lithium from brine by lithium ion sieve. Chemical Industry and Engineering Progress, 36(3), 802–809.

    Google Scholar 

  • Chung, K.-S., Lee, J.-C., Kim, W.-K., et al. (2008). Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater. Journal of Membrane Science, 325(2), 503–508.

    Article  CAS  Google Scholar 

  • Chung, W.-J., Torrejos, R. E. C., Park, M. J., et al. (2017). Continuous lithium mining from aqueous resources by an adsorbent filter with a 3d polymeric nanofiber network infused with ion sieves. Chemical Engineering Journal, 309, 49–62.

    Article  CAS  Google Scholar 

  • Conte, N., Gómez, J. M., Díez, E., et al. (2022). Sequential separation of cobalt and lithium by sorption: Sorbent set selection. Separation and Purification Technology, 303, 122199.

    Article  CAS  Google Scholar 

  • Denghong, W., Hongzhang, D., Shanbao, L., et al. (2022). New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. Journal of Geomechanics, 28(5), 743–764.

    Google Scholar 

  • Ding, W., Haoyue, D., Yacong, H., et al. (2020). Introduction of manganese based lithium-ion sieve-a review. Progress in Natural Science: Materials International, 30(2), 139–152.

    Article  Google Scholar 

  • Ding, T., Qian, W., Zheng, M., et al. (2021). Polyacrylonitrile/crown ether composite nanofibres with high efficiency for adsorbing Li (I): Experiments and theoretical calculations[J]. Frontiers in Energy Research, 2021(9), 1–11.

    Google Scholar 

  • Fangren, Q., Min, G., Bing, Z., et al. (2020). Effect of Mg doping on adsorption property of H1.6Mn1.604 lithium ion sieve. Journal of Salt Lake Research, 28(2), 1–14.

    Google Scholar 

  • Guoning, Z. (2022). Research on Lithium extraction and influencing factors of ion exchange resin. Chemical Enterprise Management, 26, 62–67.

    Google Scholar 

  • Guotai, Z., Jingze, Z., Jinbo, Z., et al. (2021). Improved structural stability and adsorption capacity of adsorbent material li1.6mn1.6o4 via facile surface fluorination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 1274695.

    Google Scholar 

  • Guotai, Z., Chunxi, H., Yuan, Z., et al. (2022). Al and f ions co-modified Li1.6Mn1.6O4 with obviously enhanced Li+ adsorption performances. Chemical Engineering Journal, 450(P2), 137912.

    Google Scholar 

  • Guotai, Z., Chunxi, H., Yuan, Z., et al. (2023). Synthesis and performance estimation of a granulated PVC/PAN-lithium ion-sieve for Li+ recovery from brine. Separation and Purification Technology, 305, 122431.

    Article  Google Scholar 

  • Haisheng, H., Jintao, G., Meitang, L., et al. (2022). Preparation and characterization of high-stability lithium ion-sieves with aluminosilicate framework. Hydrometallurgy, 213, 105929.

    Article  Google Scholar 

  • Han, Y., Kim, H., & Park, J. (2012). Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater. Chemical Engineering Journal, 210, 482–489.

    Article  CAS  Google Scholar 

  • Han, Y., Rheem, Y., Lee, K.-H., et al. (2018). Synthesis and characterization of orthorhombic-MoO 3 nanofibers with controlled morphology and diameter. Journal of Industrial and Engineering Chemistry, 62, 231–238.

    Article  CAS  Google Scholar 

  • Han, H. J., Qu, W., Zhang, Y. L., Lu, H. D., Zhang, C. L., et al. (2021). Enhanced performance of Li adsorption for H1.6Mn1.6O ion-sieves modified by co doping and micro array morphology. Ceramics International, 47(15), 21777–21784.

    Article  CAS  Google Scholar 

  • Hao, W., Xiyun, Y., Zhoulan, Y., et al. (2017). Synthesis and adsorption properties of ZrO -coated lithium ion-Sieve from salt lake brine. Chinese Journal of Inorganic Chemistry, 33(10), 1775–1781.

    Google Scholar 

  • Hongyu, L., Xiaoping, Y., Mingli, L., et al. (2019). Synthesis of polyporous ion-sieve and its application for selective recovery of lithium from geothermal water. ACS Applied Materials & Interfaces, 11(29), 26364–26372.

    Article  Google Scholar 

  • Hualun, L., Tian, C., Jing, J., et al. (2023). Prelithiation-derived hierarchical TiO sieve with metal-organic framework gate for selective lithium recovery. Chemical Engineering Journal, 451(P3), 138662.

    Google Scholar 

  • Jiajia, W., Xiyan, Y., Peifen, W., et al. (2022). Electrochemical technologies for lithium recovery from liquid resources: A review. Renewable and Sustainable Energy Reviews, 154, 111813.

    Article  Google Scholar 

  • Jianchuan, L., Yunbo, Z., Yao, M., et al. (2021). Alkaline resins enhancing Li+/H+ ion exchange for lithium recovery from brines using granular titanium-type lithium ion-sieves. Industrial & Engineering Chemistry Research, 60(45), 16457–16468.

    Article  Google Scholar 

  • Jianke, S., Jin, C., Dawei, Y., et al. (2022). Research progress on molding of ionic sieve type Li adsorbent. New Chemical Materials, 50(2), 293–297.

    Google Scholar 

  • Jian-Ming, G., Zongyuan, D., Qian, Z., et al. (2021). Enhanced Li+ adsorption by magnetically recyclable iron-doped lithium manganese oxide ion-sieve: Synthesis, characterization, adsorption kinetics and isotherm. Journal of Materials Research and Technology, 13, 228–240.

    Article  Google Scholar 

  • Jihyun, Y., Ho-Sung, Y., Byoung-Sun, L., et al. (2018). Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. Advanced Materials (Deerfield Beach, Fla.), 30(42), 1704765.

    Article  Google Scholar 

  • Jindong, L., Wenping, F., Lixin, Y., et al. (2018). The applicatian of lon exchange method in selective separation of magnesium and lithium. Fine Chemical Intermediates, 48(2), 62–68.

    Google Scholar 

  • Jing, Z., Sen, L., & Jianguo, Y. (2021). Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines. Desalination, 505, 114983.

    Article  Google Scholar 

  • Jingjing, S., Peipei, H., Lifang, C., et al. (2012). Properties and mechanism of Li+ adsorption based on D751 resin. Chemical Industry and Engineering Progress, 31(S1), 370–375.

    Google Scholar 

  • Kenji, M., Takanori, M., & Tsuyoshi, H. (2022). Efficient lithium extraction via electrodialysis using acid-processed lithium adsorbing lithium lanthanum titanate. Desalination, 543, 116117.

    Article  Google Scholar 

  • Kim, J., Oh, S., & Kwak, S.-Y. (2015). Magnetically separable magnetite–lithium manganese oxide nanocomposites as reusable lithium adsorbents in aqueous lithium resources. Chemical Engineering Journal, 281, 541–548.

    Article  CAS  Google Scholar 

  • Lei, W., Lei, W., Jin, W., et al. (2022). Synthesis of zirconium-coated lithium ion sieve with enhanced cycle stability. Separation and Purification Technology, 303, 121933’.

    Article  Google Scholar 

  • Li, N., Gan, K., Lu, D., et al. (2018). Preparation of three-dimensional macroporous–mesoporous lithium ion sieve with high Li+ adsorption capacity. Research on Chemical Intermediates, 44(2), 1105–1117.

    Article  CAS  Google Scholar 

  • Liang, W., Xin, Z., Laibo, M., et al. (2018). Research progress of cationic doping of lithium manganese oxide ion-sieve. Journal of Salt Science and Chemical Industry, 47(4), 8–11.

    Google Scholar 

  • Lijun, L. (2021). Types of lithium ion sieve. Modern Salt and Chemical Industry, 48(5), 1–4.

    Google Scholar 

  • Limjuco, L. A., Nisola, G. M., Lawagon, C. P., et al. (2016). H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li from liquid resources. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 267–279.

    Article  CAS  Google Scholar 

  • Linjiang, W., & Jianchao, T. (2022). Application strategy of ion exchange resin in wastewater treatment. Chemical Engineering Design Communications, 48(11), 67–69.

    Google Scholar 

  • Liu, L., Zhang, H., Zhang, Y., et al. (2015). Lithium extraction from seawater by manganese oxide ion sieve MnO·0.5H O. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468, 280–284.

    Article  CAS  Google Scholar 

  • Liyuan, Z., Yan, L., Yi, S., et al. (2023). Bentonite modified metatitanate titanium-lithium lon sieve and its adsorption performance. Materials Reports, 19, 1–14.

    Google Scholar 

  • Long, Y. C., Jie, S., Ju, N. Q., et al. (2021). Peculiar shuttle-like nano-sized TiO(OH)2/C lithium ion sieve with improved adsorption rate and cycling reliability: Preparation and kinetics. Hydrometallurgy, 203, 105627.

    Article  Google Scholar 

  • Lu-Ri, B., Jing-Ze, Z., Wei-Ping, T., et al. (2023). Synthesis and adsorption properties of metal oxide-coated lithium ion-sieve from salt lake brine. Desalination, 546, 116196.

    Article  Google Scholar 

  • Ma, L., Chen, B., Shi, X., Zhang, W., & Yang, X. (2011). Structure and stability of Li-Mn-Ni composite oxides as lithium ion sieve precursors in acidic medium. Journal of Central South University of Technology, 18(2), P314–P318.

    Article  Google Scholar 

  • Ma, L., Xi, X., Wang, K., et al. (2018). Adsorption of Li by a lithium ion-sieve using a buffer system and application for the recovery of li from a spent lithium-ion battery. Research on Chemical Intermediates, 44, 6721–6739.

    Article  CAS  Google Scholar 

  • Manhua, D., Dan, C., Gao, Q., et al. (2023). Research progress of lithium ion sieve adsorption materials. Journal of Functional Materials, 54(2), 2072–2081.

    Google Scholar 

  • Marthi, R., & Smith, Y. R. (2021). Application and limitations of a H2TiO3–Diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent. Separation and Purification Technology, 254, 117580.

    Article  CAS  Google Scholar 

  • Mengmeng, C., Chenxue, Y., Yan, S., et al. (2021). Synthesis of membrane-type graphene oxide immobilized manganese dioxide adsorbent and its adsorption behavior for lithium ion. Chemosphere, 279, 130487.

    Article  Google Scholar 

  • Mossali, E., Picone, N., Gentilini, L., et al. (2020). Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. Journal of Environmental Management, 264(C), 110500.

    Article  Google Scholar 

  • Naicai, X., Dandan, S., Sixia, L., et al. (2017). Advances in extracting lithium from salt-lake brines by adsorption technique. Materials Reports, 31(17), 116–121.

    Google Scholar 

  • Pramanik, B. K., Asif, M. B., Roychand, R., et al. (2020). Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration. Chemosphere, 260, 127623.

    Article  CAS  Google Scholar 

  • Qi, W., Youjing, Z., Yang, L., et al. (2021). Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio. CIESC Journal, 72(6), 2905–2921.

    Google Scholar 

  • Qinglong, L., Mingzhe, D., Guoliang, N., et al. (2021). Extraction of lithium from salt lake brines by granulated adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, 127256.

    Article  Google Scholar 

  • Rajashekhar, M., Hassnain, A., Greeshma, G., et al. (2021). On the structure and lithium adsorption mechanism of layered H2TiO3. ACS Applied Materials & Interfaces, 13(7), 8361–8369.

    Article  Google Scholar 

  • Rui, Z., Qiwei, L., Sen, L., et al. (2021). Performance evaluation and comparison of aluminum-based granulated lithium adsorbent. CIESC Journal, 72(6), 3053–3062.

    Google Scholar 

  • Ryu, T., Haldorai, Y., et al. (2016). Recovery of lithium ions from seawater using a continuous flow adsorption column packed with granulated chitosan lithium manganese oxide. Industrial & Engineering Chemistry Research, 55(26), 7218–7225.

    Article  CAS  Google Scholar 

  • Shangqing, C., Jiayin, H., Yafei, G., et al. (2021). Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water. Chemical Engineering Journal, 410, 128320.

    Article  Google Scholar 

  • Shuaike, L., Yunliang, Z., Licai, C., et al. (2022). Study on lithium adsorption properties of manganese-based and aluminumbased adsorbents for the brine from Jianghan Basin. Metal Mine, 8, 94–100.

    Google Scholar 

  • Song, Y., & Zhao, Z. (2018). Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques. Separation and Purification Technology, 206, 335–342.

    Article  CAS  Google Scholar 

  • Subhi, A. M., Al-Najar, J. A., & Noori, W. A.-H. (2022). Adsorption of dyes using natural minerals: A review. Global NEST Journal, 24(3), 451–464.

    CAS  Google Scholar 

  • Sun, D., Meng, M., Qiao, Y., et al. (2018). Synthesis of ion imprinted nanocomposite membranes for selective adsorption of lithium. Separation and Purification Technology, 194, 64–72.

    Article  CAS  Google Scholar 

  • Suyu, Z., Xiaojing, G., Xi, Y., et al. (2022). Zr-doped titanium lithium ion sieve and ep-granulated composite: Superb adsorption and recycling performance. Particuology, 69, 100–110.

    Article  Google Scholar 

  • Swain, B. (2017). Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, 388–403.

    Article  CAS  Google Scholar 

  • Taghvaei, N., Taghvaei, E., & Askari, P. M. (2020). Synthesis of anodized TiO nanotube arrays as ion sieve for lithium extraction. Chemistry Select, 5(33), 10339–10345.

    CAS  Google Scholar 

  • Tingting, Z., Wei, W., Yunliang, Z., et al. (2020). Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1d and 2d nano-composites. Chemical Engineering Journal, 420(P2), 127574.

    Google Scholar 

  • Wang, S., Zhang, M., Zhang, Y., et al. (2018). Application of citric acid as eluting medium for titanium type lithium ion sieve. Hydrometallurgy, 183, 166-174.

  • Wang, S., Zhang, M., Zhang, Y., et al. (2019). High adsorption performance of the mo-doped titanium oxide sieve for lithium ions. Hydrometallurgy, 187, 30–37.

    Article  CAS  Google Scholar 

  • Wanwan, X., Yuhao, Z., Pei, N., et al. (2023). Main types, characteristics, distributions, and prospecting potential of lithium deposits. Sedimentary Geology and Tethyan Geolog, 43(1), 19–35.

    Google Scholar 

  • Wei, S., Wei, Y., Chen, T., et al. (2020). Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. Chemical Engineering Journal, 379, 122407.

    Article  CAS  Google Scholar 

  • Weibo, B., & Jianming, P. (2020). Research progress in selective adsorption materials for lithium extraction. Chemical Industry and Engineering Progress, 39(6), 2206–2217.

    Google Scholar 

  • Wenjie, G. (2022). Study on the application of bipolar membrane electrodialysis in the treatment of saline wastewater from lithium industry[M]. Hefei University.

    Google Scholar 

  • Xia, L., Zhaoping, D., & Jing, L. (2017). Extraction of lithium from salt lake brine with kaolinite. Chemical Industry and Engineering Progress, 36(6), 2057–2063.

    Google Scholar 

  • Xiaowei, Li. (2021). Fabrication and lithium adsorption properties of Ti-based lithium-ion sieves[M].

    Google Scholar 

  • Xiaowei, L., Linlin, C., Yanhong, C., et al. (2022). Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from mxene. Desalination, 537, 115847.

    Article  Google Scholar 

  • Xiulei, L., Baifu, T., Qingyuan, J., et al. (2020). Preparation and adsorption performance of muliti-morphology H Mn O for lithium extraction. Chinese Journal of Chemical Engineering, 34, 68–76.

    Google Scholar 

  • Xiyun, Y., Gaifang, C., Zhangjun, H., et al. (2017). TiO2 coating modification for lithium ion sieve. Materials Reports, 31(S1), 435–438.

    Google Scholar 

  • Xu, X., Chen, Y., Wan, P., et al. (2016). Extraction of lithium with functionalized lithium ion-sieves. Progress in Materials SCIENCE, 84, 276–313.

    Article  CAS  Google Scholar 

  • Xu, P., Hong, J., Qian, X., et al. (2021). Materials for lithium recovery from salt lake brine. Journal of Materials Science, 56(1), 16–63.

    Article  CAS  Google Scholar 

  • Xuanlin, Z., Huihui, Y., Wenjun, S., et al. (2021). Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium-based lithium ion sieves. Separation and Purification Technology, 274, 119099.

    Article  Google Scholar 

  • Xubiao, L., Kai, Z., Jinming, L., et al. (2016). Capturing lithium from wastewater using a fixed bed packed with 3-D MnO2 ion cages. Environmental Science & Technology, 50(23), 13002–13012.

    Article  Google Scholar 

  • Xue, F., Wang, B., Chen, M., et al. (2019). Fe3O4-doped Lithium ion-sieves for lithium adsorption and magnetic separation. Separation and Purification Technology, 228, 115750.

    Article  CAS  Google Scholar 

  • Yasin, O., Zahra, N., Mahmoud, N., et al. (2022). Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination, 529, 115624.

    Article  Google Scholar 

  • Yu, Y., Xiang, M., Guo, J., et al. (2019). Enhancing high-rate and elevated-temperature properties of Ni-Mg Co-doped LiMn2O4 cathodes for Li-ion batteries. Journal of Colloid and Interface Science, 555, 64–71.

    Article  CAS  Google Scholar 

  • Yuan, Z. (2019). Preparation of lithium ion sieve and its adsorption properties under low lithium concentration[M]. Tianjin University.

    Google Scholar 

  • Yunbo, Z., Jianchuan, L., Ying, Y., et al. (2021). Preparation of granular titanium-type lithium-ion sieves and recyclability assessment for lithium recovery from brines with different pH value. Separation and Purification Technology, 267, 118613.

    Article  Google Scholar 

  • Yuwen, G., Shougui, W., Fei, G., et al. (2023). Al and Cr ions co-doped spinel manganese Lithium ion-sieve with enhanced Li adsorption performance and structural stability. Microporous and Mesoporous Materials, 351, 112492.

    Article  Google Scholar 

  • Yuzhou, Z., Yu, X., Huinan, L., et al. (2021). Study on the preparation and properties of acid-modified H2TiO3-Li adsorbent. Materials Research and Application, 15(1), 34–40.

    Google Scholar 

  • Zandevakili, S., Ranjbar, M., & Ehteshamzadeh, M. (2015). Improvement of lithium adsorption capacity by optimising the parameters affecting synthesised ion sieves. Micro & Nano Letters, 10(2), 58–63.

    Article  Google Scholar 

  • Zhang, L., Zhou, D., He, G., et al. (2015). Synthesis of H2TiO3–lithium adsorbent loaded on ceramic foams. Materials Letters, 145, 351–354.

    Article  CAS  Google Scholar 

  • Zhang, G., Zhang, J., Zhou, Y., et al. (2019). Synthesis of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorption performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123950.

    Article  CAS  Google Scholar 

  • Zhao, Y., Tian, G., Duan, X., et al. (2019). Environmental applications of diatomite minerals in removing heavy metals from water. Industrial & Engineering Chemistry Research, 58(27), 11638–11652.

    Article  CAS  Google Scholar 

  • Zhao, C., He, M., Cao, H., et al. (2020). Investigation of solution chemistry to enable efficient lithium recovery from low concentration lithium-containing wastewater. Frontiers of Chemical Science and Engineering, 14, 639–650.

    Article  Google Scholar 

  • Zhen, Y., Ying, L., & Peihua, M. (2022). Synthesis of H TiO-PVC lithium-ion sieves via an antisolvent method and its adsorption performance. Ceramics International, 48(20), 30127–30134.

    Article  Google Scholar 

  • Zhijian, W., Min, G., Quan, L., et al. (2018). Adsorption mechanisms for the recovery of lithium from brines using aluminum hydroxide based adsorbent. Journal of Salt Lake Research, 26(3), 1–6.

    Google Scholar 

  • Zhiwei, Q., Mingyou, W., Yu, C., et al. (2021). Li4Mn5O12 doped cellulose acetate membrane with low Mn loss and high stability for enhancing lithium extraction from seawater. Desalination, 506, 115003.

    Article  Google Scholar 

  • Zhuo, W., Ranxiao, H., Datian, W., et al. (2023). The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits. Geology in China, 50(1), 102–117.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (42377234), Natural Science Foundation of Jiangxi Province (20202BABL203039)

Author information

Authors and Affiliations

Authors

Contributions

Song Ye: Experiment, Writing–original draft. Chunyan Yang: Experiment. Writing editing. Yihong Sun: Experiment, Writing editing. Chengyi Guo: Experiment, Writing editing. Junfeng Wang: Conceptualization, Supervision, Methodology, Visualization, Writing – review & editing. Yunnen Chen: Writing–review. Changming Zhong: Conceptualization, Writing – review. Tingsheng Qiu: Supervision, Writing review.

Corresponding author

Correspondence to Junfeng Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Yang, C., Sun, Y. et al. Application and Mechanism of Lithium-ion Sieves in the Recovery of Lithium-Containing Wastewater: a Review. Water Air Soil Pollut 235, 272 (2024). https://doi.org/10.1007/s11270-024-07085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07085-6

Keywords

Navigation