Skip to main content
Log in

Nonlinear Variational Inequalities with Bilateral Constraints Coinciding on a Set of Positive Measure

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

We consider variational inequalities with invertible operators \({{\mathcal{A}}_{s}}{\text{:}}~\,W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right),\) \(s \in \mathbb{N},\) in divergence form and with constraint set \(V = \{ {v} \in W_{0}^{{1,p}}\left( {{\Omega }} \right){\text{: }}\varphi \leqslant {v} \leqslant \psi ~\) a.e. in \({{\Omega }}\} ,\) where \({{\Omega }}\) is a nonempty bounded open set in \({{\mathbb{R}}^{n}}\) \(\left( {n \geqslant 2} \right)\), p > 1, and \(\varphi ,\psi {\text{: }\Omega } \to \bar{\mathbb{R}}\) are measurable functions. Under the assumptions that the operators \({{\mathcal{A}}_{s}}\) G-converge to an invertible operator \(\mathcal{A}{\text{: }}W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\), \({\text{int}}\left\{ {\varphi = \psi } \right\} \ne \emptyset ,\) \({\text{meas}}\left( {\partial \left\{ {\varphi = \psi } \right\} \cap {{\Omega }}} \right)\) = 0, and there exist functions \(\bar {\varphi },\bar {\psi } \in W_{0}^{{1,p}}\left( {{\Omega }} \right)\) such that \(\varphi \leqslant \overline {\varphi ~} \leqslant \bar {\psi } \leqslant \psi \) a.e. in \({{\Omega }}\) and \({\text{meas}}\left( {\left\{ {\varphi \ne \psi } \right\}{{\backslash }}\left\{ {\bar {\varphi } \ne \bar {\psi }} \right\}} \right) = 0,\) we establish that the solutions us of the variational inequalities converge weakly in \(W_{0}^{{1,p}}\left( {{\Omega }} \right)\) to the solution u of a similar variational inequality with the operator \(\mathcal{A}\) and the constraint set V. The fundamental difference of the considered case from the previously studied one in which \({\text{meas}}\left\{ {\varphi = \psi } \right\} = 0\) is that, in general, the functionals \({{\mathcal{A}}_{s}}{{u}_{s}}\) do not converge to \(\mathcal{A}u\) even weakly in \({{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\) and the energy integrals \(\langle {{\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\rangle \) do not converge to \(\langle \mathcal{A}u,u\rangle \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Spagnolo, “Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,” Ann. Sc. Norm. Super. Pisa. Cl. Sci. (3) 22 (4), 571–597 (1968).

  2. V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, and H. T. Ngoan, “Averaging and G-convergence of differential operators,” Russ. Math. Surv. 34 (5), 69–147 (1979).

    Article  MathSciNet  Google Scholar 

  3. A. A. Pankov, “Averaging and G-convergence of nonlinear elliptic operators of divergence type,” Dokl. Akad. Nauk SSSR 278 (1), 37–41 (1984).

    MathSciNet  Google Scholar 

  4. A. Pankov, G-Convergence and Homogenization of Nonlinear Partial Differential Operators (Kluwer Academic, Dordrecht, 1997).

    Book  Google Scholar 

  5. A. A. Kovalevskii, “G-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain,” Russ. Acad. Sci. Izv. Math. 44 (3), 431–460 (1995).

    Google Scholar 

  6. F. Murat, “Sur l’homogeneisation d’inequations elliptiques du 2ème ordre, relatives au convexe \(K\left( {{{\psi }_{1}},{{\psi }_{2}}} \right)\, = \,\{ {v} \in H_{0}^{1}\left( {{\Omega }} \right)|{{\psi }_{1}} \leqslant {v} \leqslant {{\psi }_{2}}\) p.p. dans \({{\Omega }}\} \),” Publ. Laboratoire d’Analyse Numérique, No. 76013 (Univ. Paris VI, 1976).

    Google Scholar 

  7. A. A. Kovalevsky, “Convergence of solutions of nonlinear elliptic variational inequalities with measurable bilateral constraints,” Results Math. 78 (4), 145 (2023). https://doi.org/10.1007/s00025-023-01921-7

    Article  MathSciNet  Google Scholar 

  8. G. Dal Maso and A. Defranceschi, “Convergence of unilateral problems for monotone operators,” J. Anal. Math. 53 (1), 269–289 (1989). https://doi.org/10.1007/BF02793418

    Article  MathSciNet  Google Scholar 

  9. L. Boccardo and F. Murat, “Homogenization of nonlinear unilateral problems,” in Composite Media and Homogenization Theory, Ed. by G. Dal Maso and G. F. Dell’Antonio (Birkhäuser, Boston, 1991), pp. 81–105.

    Google Scholar 

  10. A. A. Kovalevsky, “Nonlinear variational inequalities with variable regular bilateral constraints in variable domains,” Nonlinear Differ. Equations Appl. 29 (6), 70 (2022). https://doi.org/10.1007/s00030-022-00797-w

    Article  MathSciNet  Google Scholar 

  11. L. C. Evans, Partial Differential Equations (Am. Math. Soc., Providence, RI, 1998).

    Google Scholar 

  12. J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (Dunod, Paris, 1969).

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the Program of development of Ural Federal University under the “Priority-2030” academic leadership program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kovalevsky.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalevsky, A.A. Nonlinear Variational Inequalities with Bilateral Constraints Coinciding on a Set of Positive Measure. Dokl. Math. (2024). https://doi.org/10.1134/S1064562424701813

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1064562424701813

Keywords:

Navigation